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ABSTRACT

Wavelet Analysis of Dynamic Response : Flow Induced
Vibration of a Single Cylinder
in a Cross Flow

Nabeel Hamdi Abdullah Shabaneh

Supervised by
Prof. Bassam Ali Jubran

Co-Supervised by
Dr. Moh'd Nader Hamdan

Published experimental data indicates that the vibration signals of an
elastically mounted single cylinder in a cross flow are in general
nonstationary. This important issue has been thus far ignored, where
stationarity of the signals is often proposed to allow implementation of the
available classical methods, such as autocorrelation and power spectrum
functions.

The present work attempts to shed some lights on the dynamic process
of flow induced vibration of an elastically mounted single cylinder in a
cross flow using the newly developed joint time-frequency analysis
techniques (JTFA), such as Gabor and wavelet transforms. Gabor
transform and various wavelet transforms are implemented and the results
are compared to those of the classical methods (autocorrelation and power
spectrum). The wavelet transforms, which possess good time-frequency
localizations, are found to be the most powerful techniques to analyze and
reveal the many aspects of the complex dynamic characteristics of
nonstationary signals under consideration. More specifically, the

modulated Gaussian wavelet is found to be the most suitable wavelet to
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analyze the flow induced vibration process. Also, the nonlinearity of the
process under consideration is investigated by both classical and JTFA
methods.

1t is found that for certain system parameters the nonlinearity may lead
the system into chaos. Furthermore, phase-plane portraits, Poincaré maps
and fractal dimensions have been used to confirm the chaotic behavior of
the response of the system under investigation. Recommendations for

further investigations are discussed.
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CHAPTER 1
INTRODUCTION

1.1 INTRODUCTION

Flow induced vibration arises in many practical engineering systems,
such as heat exchangers, power transmission lines, bridges and tall towers.
For example, when an elastically mounted cylinder is placed in a cross-
flow (bluff body) it is generally known that as the flow separates from
either side of the cylinder, vortices are shed alternately resulting in an
oscillating external force which causes the cylinder to oscillate [1].

It is to be noted that large amplitude vibrations due to vortex shedding
are observed when the flow free stream velocity reaches a critical value.
Resonant oscillations can be excited by the incident flow if a bluff cylinder
structure is flexible and lightly damped. As a consequence of this flow
induced resonance, the body and wake oscillate at the same frequency as
they interlock in a "somewhat” complex feedback loop, a phenomenon
generally known as lock-on, where the frequency is near one of the
structure characteristic  frequencies [2,3]). One of the approaches
traditionally used to analyze the collected data (time-series) of flow
induced vibration is the spectral distribution using the Fourier transform
(FT) and, sometimes, the autocorrelation function. The FT does not reveal
any information about localization in time, since it assumes that the signal
analyzed to be of infinite duration and the window used is representative
throughout the signal, i.e. it assumes the signal to be stationary. This
assumption can not hold for nonstationary signals, wherein transient effects
are of much concern. Because of the many pitfalls of the FT analysis [4],
new joint time-frequency analysis (JTFA), such as the Gabor transform

(GT) and the wavelet transform (WT), have been recently introduced [5,6].
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Among these JTFA, the wavelet transform (WT) appears to be the most
powerful tool yet presented for the analysis of the dynamic behavior of
nonstationary signals (proccs—s). Wavelet transforms are rapidly finding
applications in many branches of science, such as fluid mechanics,
structural dynamics, sound and vision processing, acoustics, random
vibrations and many others [4,7-10]. One of the major characteristics of the
WT is its good time-frequency localization, i.e. it has good time-frequency
resolution [6].

Moreover, any system which is nonlinear as the one presented in this
study may show chaotic behavior for certain combinations of system
parameters [11,12]. A nonlinear system undergoing chaotic behavior is
characterized by a broad banded and fluctuating power spectrum, where
various harmonics are continuously excited and then become unstable and
bifurcates to other harmonics. Since the frequency spectrum is time
varying (usually rapidly), JTFA becomes a must for a realistic and rigorous
study of chaotic systems. In general, any nonlinear system may be studied
via qualitative or quantative techniques to investigate its dynamic stability.
The main classical tools frequently used to study the stability and the
chaotic behavior of the systems are the phase-space portraits, the Poincaré
maps and the fractal dimensions. It is shown in this work that WT can be
used as another powerful and useful tool in the analysis of the chaotic
behavior of the system under consideration, i.e. it can be used more
efficiently than classical methods to construct bifurcation diagram.

To the best of the present author's knowledge, the problem of flow
induced vibration, as pointed out above, has been analyzed using classical
methods. Only, in the recent work presented by Abu-Samak [13] at the
University of Jordan, the WT has been introduced in the study of flow
induced vibration of an elastically mounted cylinder. The present work is a

continuation of the "somewhat" preliminary work in [13], where the data
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3. The use of a more realistic and appropriate discretization scale for the
time series, so as to extend the frequency range over which the data is
valid. “

4. Considering new values of free stream velocities in the same range
considered in [13], for which the process shows different and
interesting dynamics.

5.The addition of 3D joint time-frequency-phase analysis, not
considered in [13], which represents a plot of the imaginary part of
the complex wavelet ignored in [13], and is particularly suited to the
detection of singularities in the signal, if any [6].

6. To explore the possibilities of using GT in the dynamic analysis of
the process and to compare the results with those obtained using the
WT. The necessary software needed to implement GT analysis is
developed and tested in this work.

7. To carry out a more detailed and rigorous investigation of the type of
nonlinearity which may be present in the process and to examine the
range of parameters over which the process undergoes chaotic

motion.

1.2 LAYOUT OF THE THESIS

The thesis is divided into seven chapters, of which this introduction is
the first. Chapter two gives a review of the flow-induced vibration
phenomena as well as a literature survey at the end. On the other hand,
chapter three elucidates several concepts of signal processing methods and
algorithms used in this work; however, at the end of the chapter a separate
literature survey concerning the new signal processing methods is
supplemented. Chapter four lays down the theory behind chaotic behavior

of systems in general as well as the methods adopted in this work for
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chaotic investigations, whereas at the end of the chapter a literature survey
concerning the chaotic behavior of systems is presented.

Chapter five discusses thé experimental work carried out in this work.
The instrumentation and the experimental procedures used are thoroughly
detailed. Moreover, in chapter six the experimental results and their
analysis obtained are represented and discussed thoroughly.

Finally, chapter seven is devoted to the conclusions and the

recommendations which may be useful for future investigations.
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CHAPTER 2
FL.OW INDUCED VIBRATION

2.1 INTRODUCTION

Flow induced vibration arises in many practical engineering systems,
such as heat exchangers, power transmission lines, bridges and tall towers.
For example, when an elastically mounted cylinder is placed in a cross-
flow it is generally known that as the flow separates from either side of
cylinder, vortices are shed alternately resulting in an oscillating external
force which causes the cylinder to oscillate [1].

It is well known that an oscillating aerodynamic force is induced on a
structure which vibrates in a steady flow. The structure can achieve
aerodynamical stability if the oscillating aerodynamic force tends to abate
the structure vibrations, whereas if this force tends to augment the structure
vibrations, aerodynamical stability can not be achieved and thus the
structure is termed as aerodynamically unstable. For sufficiently small
vibration amplitudes, the aerodynamic force may be modeled as a linear
function of the angle of flow relative to the structure, for example the
airfoil flutter. However, if the flow separates from the structure cross-
section, then the aecrodynamic force is nonlinear function of the flow angle,
and the structure is said to be a bluff [1].

The viscous flow past a two-dimensional bluff body and the resulting
recirculating region behind the bluff body have been a subject for
numerous investigations [1,14-17]. Over a wide range of Reynolds
numbers (from 50 and up to 10° and even higher), the physics of street
formation and the near-wake flow have been experimentally studied [18-

26]. 1t is well known that the flow depends on, for example, Reynolds
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number, surface roughness of the bluff body, blockage, free stream
turbulence, the aspect ratio and the end plates conditions.

Vortex shedding theory is vhery complex, and the exact solution to the
fluid elastic problem has not, yet, been developed. A promising new
investigations which examined oscillating flow problems have begun to
relate vortex motions to the forces exerted on the cylinder [14,16,27].
These vortex motions are explained in terms of the relevant dimensionaless
parameters.

Furthermore, recent experiments [14,15] ensure that abluff body in a
perturbed incident flow consisting of a mean flow with a periodic
component superimposed upon it is identical, under suitable conditions, to
the vortex resonance of a cylinder oscillating in line with an incident
uniform flow.

In general, cylinder vibration in a cross-flow near the vortex shedding
frequency can enlarge the spanwise correlation of the wake, augment the
drag force, increase the vortex shedding and force the vortex shedding
frequency to deviate from the stationary cylinder shedding frequency to the
cylinder vibration frequency, called lock-on effect; which is also present if
the vibration frequency is equal to a multiple or submultiple of the
shedding frequency [I].

Also, it is to be noted that large amplitude vibrations due to vortex
shedding are observed when the flow reaches a critical value. These
vibrations have a destructive effects on cables, bridges and other structures,
which make the study of the flow induced vibration of a practical

importance.

2.2 THE F1L.OW INDUCED VIBRATION PHENOMENA

If acylinder is set normal to a uniform flow direction, the fluid structure

dynamic interaction will induce a transverse oscillation of the cylinder.
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approximate theoretical model for the fluid-structure interaction problem
with some success.
The main reason for the difficulty of developing a successful model is

due to the relatively large number of parameters affecting the amplitude of

the vibrating body. These parameters include; the reduced velocity, the

mass ratio, Reynolds number and the damping factor.

454187
2.3 FORMS OF FLOW INDUCED VIBRATION

There are four forms of flow induced vibration ; namely , vortex
shedding, fluid elastic excitation or galloping, flutter and acoustic

excitation. Following is a brief description of each.

2.3.1 VORTEX SHEDDING

Vortex shedding has been the most common form of fluid dynamic
excitation for a single a cylinder. Blevins [1] described the mechanism of
separation and vortex shedding. He claimed that when the fluid flows
toward the leading edge of a bluff body the fluid pressure rises from the
free stream pressure to the stagnation pressure. This will develop boundary
layers on both sides of the cylinder. These boundary layers separate from
each side of the cylinder surface near the widest section and from two free
shear layers which bound the wake. Since the innermost portion of the free
shear layers moves much slowly than the outer most portion of the layers
which are in contact with the free stream, the free shear layers tend to roli
up into descent, swirling vortices. The shedding of the formed vortices
alters the pressure distribution, and the cylinder experiences a time varying
force at the frequency of vortex shedding. Fig.(2.2) illustrates this

mechanism.
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Lock-on phenomena is an important feature of vortex-shedding
excitation. If the frequency of the vortex-shedding is in resonance with the
natural frequency of the member that produces it, large amplitude
oscillations with consequent large stresses can develop. These oscillations
begin when the velocity increases or decreases so that the shedding
frequency approaches the natural frequency of the structure. Lock-on
occurs over a certain range of velocities depending on the structural and
flow properties. This is the difference between the lock-on and the usual
case of resonance which exhibits a single resonance point.

As the lock-on phenomena begins and the motion of the vortex shedding
locks into the structural frequency, a feed path is completed so that the
motion of the structure controls the vortex shedding. Lock-on phenomenon
disappears beyond a critical condition due to the limited capacity of the

oscillating structure to alter the frequency of vortex shedding.

2.3.2 FLUID-ELASTIC EXCITATION (GALLOPING)

The flow induced vibration of bluff structure is commonly referred to as
stall flutter or galloping. For any lightweight, flexible structure exposed to
a flow, galloping may arise. Various cross sections, such as square,
rectangular, right angle, and stalled aerofoil are potentially unstable in the
presence of aerodynamic galloping.

The main assumption of galloping analysis is that the fluid force on the
structure is determined solely by the instantaneous relative velocity and the
angle of the attack of the flow to the structure. This implies that the
information about the fluid force can be measured by wind tunnel test on
stationary model held at various angles.

The most fascinating feature of the interference galloping is that both the
mean position of the motion and the body's oscillation frequency may vary

appreciably with increasing flow velocity. Another notable feature is that
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the vibration amplitude always approach asymptotically a constant value.
The instability is either in the form of a vortex resonance or a galloping.
The cylinder never exhibits a combined vortex resonance and a galloping
or a vortex resonance followed by a galloping [17].

Galloping vibration can be prevented by increasing the internal damping
of the structure, reducing the flow velocity, stiffening the structure,
increasing the mass of the structure without lowering its natural frequency
or damping, and changing the orientation of the structure to the flow or the

contours of the structure in order to stabilize it.

2.3.3 FLUTTER

Flutter has been defined as the dynamic instability of an elastic body in
an airstream and is produced by aerodynamic force which result from the
deflection of the elastic body from its undeformed state [2].

Flutter can occur in any engineering application of more than two
degrees of freedom, such as long-span suspension bridges and turbine
blades. The main reason of flutter is due to coupling interaction of bending
and torsion modes.

The aerodynamic forces of aircraft flutter are often sufficiently large to
produce large shifts of the natural frequency, while in the galloping
vibration they are usually small to produce significant shifts of the natural
frequencies. Also, aerodynamic flutter is produced by more than one mode

of vibration, but galloping vibrations affect a single mode.

2.3.4 ACOUSTIC EXCITATION

The application of an appropriate sound field to the flow about a
cylinder can induce vortex lock-on and resonance in the wake. There are
even fewer reported studies of the effect of sound than rotational

oscillations. It was observed that the vortex lock-on was induced by the
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velocity rather than the pressure, and the lock-on occurred at a frequency
less than Strouhal frequency. Turbulence in the free stream suppressed the
influence of sound on the vortex shedding. The results suggest that the
induced sound field velocity must exceed the turbulence velocities so that

the sound causes vortex shedding along the span of the cylinder [28].

2.4 VIBRATIONS INDUCED BY AN OSCILLATING FLOW.

It has been observed that an oscillating flow, for example ocean waves,
can cause a destruction of structures [28,29]. Oscillating flows, which may
arise in acoustics and turbulence as well, usually involve nonlinear
vibration problems, which in turn have not been fully explored yet. Despite
the huge literature on estimating the forces on stationary structures, little
theoretical and experimental work on the complex dynamic response of
elastic structures to oscillating flows is available.

In order to reduce the vibrations induced by an oscillating flow, either
the amplitude of fluid oscillation is reduced, which is usually not possible,
or the structure is modified. The structure can be modified by one or more
of the following; avoiding resonance by increasing the fundamental
frequency of the structure up to at least five times that of the oscillating
flow, increasing the ratio of the structural mass to the displaced fluid mass,
increase the damping of the structure and modify the cross section so that

the inertial and drag coefficients of the cross section are reduced [1].

2.5 LITERATURE SURVEY

It is well known that the response of structures interacting with fluid
flow is essentially nonlinear. Also, the fluid flow and the structure are

interactive systems; and their interaction is dynamic [1]. Structure
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deformation is caused by the exerted fluid forces. In turn, this causes a
change in the pressure distribution, and some interesting effects arise;
following a brief of some related studies.

Resonant oscillations can be excited by the incident flow if a bluff
cylinder is flexible and lightly damped, or rigid and flexibly mounted. As a
consequence of this flow induced resonance, the body and wake
oscillations have the same frequency; usually termed lock-on, which is near
one of the structure characteristic frequencies [2,3]. Sarpkaya [30] and
Bearmann [18] introduced extensive reviews of vortex shedding and vortex
induced vibration.

The results of recent experiments about the vortex shedding phenomena
and bluff body wakes flow control are reported by Griffin and Hall {27,31-
33]. They observed both symmetric and asymmetric vortex patterns over a
wide range of oscillation conditions. For a bluff body oscillating in-line
with the incident flow, vortex lock-on was observed at f =2,3 and 4 fn,
with an asymmetric street formed at twice the basic Strouhal frequency and
a symmetric street formed at three times the basic Strouhal frequency. The
asymmetric pattern was complex in that one row consisted of a line of
single vortices, whereas the other row consisted of a line of oppositely
rotating vortex pairs. The vortex lock-on at three times the Strouhal
frequency resulted in the formation of a symmetric street of vortices. In the
above cases, the basic patterns persist downstream over a large number of
oscillation cycles. When the oscillation frequency is four times the Strouhal
frequency, a symmetric pattern is formed but rapidly loses its coherence in
the early wake. Filler et al. [14] investigated the response of the shear
layers separating from circular cylinder to small amplitude oscillations.
They reported that at lower frequencies near the usual Karman shedding
frequency, a large resonant peak occurred, whereas at higher imposed

frequencies a secondary broad peak in the range of the shear layer
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instability frequencies occurred. Also, they reported that in the Karman
frequency range of vortex shedding, the wake behaved like a nonlinear
oscillator near resonance. These results were explored by numerous
investigations for the cases of cross-flow and in-line oscillations [34-37].
More recently, Tokumaru et al. [15] showed that lock-on may be caused by
rotational oscillations. They claimed that active control of the near wake
vortex formation and flow physics by rotational oscillations of the cylinder
can reduce the drag on the cylinder by a factor of six.

The introduction of the absolute convective theory of fluid dynamic
stability has opened the road for a new promising approach to understand
the physics of vortex formation and near-wake flow development [38-44].
Extensive stability calculations based upon computed and measured mean
velocities in the wakes of stationary circular cylinders suggest that the
vortex formation region is absolutely unstable while the fully-formed
vortex street is convectively unstable. The vortex formation region is
thought to be a complex global region that is characterized by the
interaction between the model and the flow upstream and downstream
propagating vorticity waves [45-47].

In recent years a number of important theoretical advances describing
the absolute instabilities of shear flows have been introduced [48-521.
Chomaz et al. [53] introduced the concept of global instability as opposed
to absolute instability. Their investigations showed that in order for
globally unstable oscillations of a shear flow to occur both the flow must
be absolutely unstable and the region of instability must reach a sufficiently
large size. As a consequence of the global instability of a bluff body wake
is the generation of a highly coherent and nonlinear oscillation, in the
absence of external excitation. Therefore, perturbation of this global
instability, at a frequency other than its self-excited one, can give rise to a

number of interesting phenomena. Williamson et al. {26] as well as
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Ongoren et al. [54,55] studied various locked-in and quasi-periodic status
of response attainable by forced excitation of a cylinder. The production of
a large number of spectral components and the onset of spectral broadening
in the near wake due to instabilities from a stationary cylinder, from a
cylinder under aeroelastic excitation in one of its spanwise modes or from
external excitation of a two dimensional rigid cylinder is extensively
described by Olinger et al. [56], and Karaniadakis et al. [57]. They have
demonstrated numerically the occurrence of period-doubling in the
secondary instability from a circular, stationary cylinder at low Reynolds
number. Three-dimensionality of the flow structure is a necessary part of
this period doubling process.

Nuzzi et al. [58] investigated the inducement of period-doubled vortex
formation from a non-uniform cylinder subjected to forced excitation. They
showed that detuning of the highly coherent vortex formation in the
spanwise direction, arising from the gradual variation of the cylinder
diameter, would promote the occurrence of nonperiodic and period-
doubled states. They emphasized that globally locked-in, three dimensional
vortex formation can occur along the entire span of the flow. Moreover, if
the excitation frequency was properly tuned, regions of period-doubled and
locally locked-in vortex formation could exist along various parts of the
span. Also, the occurrence of period-doubled vortex formation did not
feature vortex coalescence, instead the flow structure bifurcated between
two different states. This is obviously different than the classical
subharmonic instability in free shear flows.

Form another important view, Baker et al. [59] discussed the transition
process and the horseshoe vortex phenomena by implementing the
nonlinear dynamics and the chaos theory. They found that as the Reynolds

number increases, the number of horseshoe vortices increase from 2 to 4 to
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6, respectively. Two distinct sorts of oscillations were reported; period
doubling and later on chaos when reaching turbulence flow.
Shirakashi et al. [60] conducted an experimental study on the oscillation

behavior of an elastically supported cylinder whose rotational-mode natural
frequency f,, is several times higher than that for translational-mode S

They reported the occurrence of a subharmonic resonance at f, [f,=3in
addition to normal one at f,/f, =1, where f, is the Karman vortex
shedding frequency and f, is the natural frequency of the cylinder. They
explained these peaks as follows, when the free stream flow velocity U,_is
low, a translational-mode oscillation occurs at a frequency f,..AsU,
increases, its amplitude attains a maximum peak when f, is equal to f,,
after that a second maximum amplitude occurs at f,/f, =3 and the
motion is purely translational. As U_ becomes even higher, a third
maximum amplitude peak around f,/f, =3 appears and a rotational-
mode dominates the flow process.

It is to be noted that in the case of a cylinder without endplates, and the
wall of the test cylinder at a point near to the side-wall, additional peak was
found at a frequency about 1/3 the Karman vortex-shedding frequency
[60]. They attributed this additional peak to the effect of open slots on the
vortex-shedding and not induced by the cylinder oscillation, and there
confirmation was that this peak disappeared when using the blocking
plates. The effects of the blocking plates on the oscillating behavior of a
cylinder can be introduced as follows. In translational-mode oscillation
without blocking plates, two peaks appeared in the power spectrum at
f,]f..=1 and f,/f, =3. The second peak is assumed to be caused by
the side wall effect. But, when attaching the blocking plates, the higher
frequency peaks where completely removed from the power spectrum,

whereas the lower frequency peaks became sharper.
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Using a good technique to establish the onset of fluid elastic instability,
Mam et al. [61] introduced a vorticity formulation of the instability
problem using the perturbation techniques then these equations were solved
numerically. Moreover, the evolved fluid forces were obtained by
integrating the pressures around the cylinder surface in order to predict the
threshold for of the dynamic instability. The occurrence of instabilities
were investigated and a parametric optimization study was conducted by
altering the parametric vector which contained the Reynolds number, the
geometry, the disturbance pattern, and the pitch-diameter ratio.

More recently, Higuchi et al. [62] used wavelet analysis to study the
unsteady and asymmetric vortex shedding in the wake of two flat plates
placed side by side normal to the water flow. The spacing between the two
plates was varied over the range of one to two plate widths with Re=1500
based on an individual plate width. They found that for a small plate
spacing, the deflection of the jet passing through the gap resulted in a
larger wake with mostly symmetric vortex shedding on one side and a
smaller wake with asymmetric shedding on the other. The intermediate
wake presented for small plate spacing resembled that of a single bluff
body, whereas a major intermittent structure was observed at the wider
spacing. A flow visualization study was conducted. The Fourier spectra of
the velocity data at certain position was used and more than one dominant
frequency was showed. Wavelet transform (WT) was implemented to map
the intermittent near-periodic structures, and quantified their mean energy
spectrum. They used the Mexican hat wavelet as a basic wavelet, and the
three-dimensional array of numbers was plotted as an energy map by
utilizing the Parseval's theorem. The obvious results were that the
concentration of energy is nearly periodic in a narrow range of durations
and the occasional surging of the flow at long durations, simple counting of

the structures reveals a difference in frequency between the two sides of
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the wake, and the overall regularity and the some intermittency in the
vortex shedding. Thus based on the WT, the structure maps isolate
individual events irrespective of the intermittency or modulation of
irregular sequences.

In his experimental investigations of the flow around a circular cylinder,
Norberg [63] recently studied the influence of aspect ratio on the flow, and
the main parameters altered were the Strouhal number and the mean base
suction coefficient, both measured at mid-span position of the cylinder.
Various aspect ratios L/ D, at low blockage ratios were achieved by
changing the distance between circular end plates. The Re range was from
about 50 to 4 X 10* and the end plate-diameter ratios were from 10 to 30.
A parallel shedding, at around mid-span towards both ends of the cylinder,
was observed throughout the laminar shedding regime when there was a
small but symmetrical free stream velocity increment. At high Re, the
parameters at different aspect ratios were compared with those of a quasi-
infinite cylinder and the required aspect ratio to which conditions
independent of those parameters were reported. A bi-stable flow switching
between regular vortex shedding and irregular flow was reported at
Re ~ 2% 10* in the subcritical regime with the smallest relative endplate
diameter and for aspect ratios less than 7.

By both visualization and force measurements, Gopalkrishnan et al. [64]
investigated experimentally the feasibility of free shear flow control and
energy extraction from the large eddies in a free shear flow. A D-section
Cylinder oscillating transversely as it is forced to move forward at constant
speed, and a heaving and pitching foil, situated behind the cylinder are used
to demonstrate the feasibility of changing the flow through vorticity
control. It was shown experimentally that free shear flows can be partially
altered through direct control of the large coherent vortices presented on

the flow. It should be noted that the foil was placed in the wake of the D-

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



19

section cylinder, sufficiently far behind the cylinder in order to avoid
interference with the vortex formation process. The heaving and pitching
oscillation of the foil was at a frequency close to the Strouhal frequency of
the cylinder, where the cylinder and the foil also moved forward at constant
speed. The flow-visualization experiments were conducted in Kalliroscope
fluid at Re of 550, whereas force and torque measurements were conducted
at Re of 2x%10* thus assessing the impact of flow control on the

efficiency of the oscillating foil and hence investigating the possibility of

energy extraction.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



20

‘—;—W Steady Flow
h 4
Internza!l Flow External Flow
|
l_ |
Y A 4 h 4
Instability of Fluid- Pipe Whip Aerodynamic Vortex-Induced
Conveying Pipes Instability Vibration
N — —
h 4 h 4
Vortex-Induce
. Flutter
lrte:a;fll'\;e 4 d Structural
nstability Vibration
v _ i Stall Fluter and
Galloping
Wake-Induced Whirling of Vortex-Induced
Vibration Close-Packed Acoustic vibration
Tube Arrays
‘ Unsteady Flow
Y h 4
Turbulence-Induced Vibration Due to
Vibration Sinusoidal waves
Wind-Induced
|———¥ Vibration
Vibration-induced Ocean-Wave
By Turbulent Sea Induced-Vibration
A 4 Y : h 4
|
Vibration Vibration Induced

Turbulence-
Induced-Vibration

!

By Random
Acoustic Loads

Induced-Vibration

Acoustic Wave

Figure (2.1) : A Classification of Flow Induced-Vibrations [1].
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Figure (2.2) : Illustration of the Vortex Shedding Mechanism [1].
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CHAPTER 3
SIGNAL PROCESSING

3.1 INTRODUCTION :

New joint time-frequency analysis methods (JTFA) are rapidly finding
applications as powerful tools for the analysis of nonstationary signals.
Among others, wavelet transform (JTFA method) appears to have the most
reliable and adequate representation of the various activities of signals
whether transients or stationary.

In this chapter classical methods used to analyze the signals of the flow-
induced vibration process are briefly reviewed in the following section,
whereas JTFA are outlined in the subsequent section. A separate literature

review of JTFA is provided in the last section.

3.2 CLASSICAL METHODS

Signals can be classified into two main categories; deterministic and
random (stochastic) signals. The deterministic signals can be completely
described as a function of time. However, random signals are those which
can not be expressed explicitly as functions of time and are generaily
classified into stationary and nonstationary. If the statistical parameters,
namely, the autocorrelation, or equivalently the power spectrum, and the
mean value are time invariant, the signal is said to be stationary; otherwise
it is nonstationary.

It is to be pointed out that a stationary signal can exhibit unexpected
events, but we know in advance the possibilities of these events, i.e., they

are statistically predictable.
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Most experimental measurements of random processes are carried out
digitally, thus digital computer signal processing (DSP) algorithms have
been introduced. For example, any signal analyzed via a personal computer
must use DSP. Two main DSP algorithms, namely; digital filtering or Fast
Fourier Transform (FFT), are commonly employed to obtain a description
of the frequency content of a random signal. In the following subsections,
the classical methods, such as, the autocorrelation and the power spectrum

methods, are outlined.

3.2.1 THE AUTOCORRELATION

The autocorrelation function provides information about the dependence
of a random variable value at one time on the variable value at another
time; it is given by

T/2

R(D=limy [3Ox@+0d=E[x0)x@+D] 6D

T £ _TN2
where E [x(t)] is the expectation operator.

In its discretized form, the elements of the autocorrelation series can be

written as

n-1
R (i)=Y x()x@+]), i=—(n-1),...,-1,0,1,...,(n—1) (3.2)

=0
where n is an integer representing the variable elements (time), and

x(j)=0if j<O or j=n. Also, the autocorrelation is an even function

of T, while its maximum is obtained at T = 0.

3.2.2 THE POWER SPECTRUM

Used for simplicity, the Fourier Transform (FT) and the power spectrum
density arise as powerful classical methods to study the frequency content

of periodic or stationary random signals.
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If the continuous transformation x(z) to X ( f ) represents a FT pair, see

Appendix A, then the discrete Fourier transform (DFT) of the discretized

signal x(n), is termed the amplitude spectrum and it is given by
N-1 _
X (k)= Y x(n)e ™" k=0,1,..,N-1 (3.3)

n=0

and its inverse is thus

N-1 .
x(n)=—1—b— Y X (k)™ N, n=0,,....N-1 (34

k=0
where N is the number of data points.

Although the FT of the signal itself has several interesting properties,
listed in Appendix A, it is not often used for random signals, while, Fourier
transform of the autocorrelation function is often used to study these
random signals and it is termed the power spectrum density. In addition to
its representation of the power distribution with respect to frequency,
power spectrum density measures the average rate of fluctuation of the
random signals. The power spectrum density can be derived from the
autocorrelation function as follows; assuming the integral of the

autocorrelation function R_ (T) from —oo to oo is finite, then the power

spectral density function (the power spectrum) is given by

X(f)= ]:Rx(t)e*ﬁ"f dt (3.5)

where f is the frequency. Moreover, the inverse FT gives the inversion

formula of Eq.(3.5) as
R (v)= [X(f)e™ df (3.6)

On the other hand, the DFT of Eq.(3.5) is given by
S(f)= 2R (m)e ™" 3.7)

n=—oo
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Since direct implementation of DFT requires approximately 2" complex
operations for an N points record, a computational technique, the Fast
Fourier Transform (FFT), was developed to minimize the number of
operations needed to compute the DFT approximately N log, N, such that
N is a power integer of two. The advantages of the FFT include its speed
and memory efficiency; however, the size of the signal array must be a
power of two.

In order to adequately represent a stationary process the time record
should be longer than the basic cyclic time of the process. If the length of
the time record is comparable with the transform size of the analyzing
system, then the full power spectrum of the data record is calculated in one

pass.

3.3 _JOINT TIME-FREQUENCY ANALYSIS

It should be noted that the FT decomposes the analyzed signal
canonically into sines and cosines assuming the signal to be periodic and
stationary. Since a sinusoidal function is highly localized in frequency
domain and infinitely distributed in time domain, the FT does not provide
information about time localization of high frequency transients which may
exist in a random nonstationary process. Thus, new methods which can
provide both time and frequency localization are introduced, and generally
called joint time-frequency analysis methods (JTFA). JTFA are classified
into linear and quadratic. Linear JTFA, which satisfies the linearity
principle given in Appendix A, can be further distinguished as the short-
time Fourier transform (STFT), the Gabor transform (GT) and the wavelet

transform (WT).
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aliasing, time window effect, picket fence effect, and bandwidth-
localization tradeoff. For example, for a large analysis window, low
frequencies can be calculated, while high frequencies are poorly localized.
On the other hand, the STFT in time and frequency domains can not be
arbitrarily small because their product is lower banded [66] so that
Time - Bandwidth Product = At Af 21/4n (3.10)

Thus, for impulsive and nonstationary signals which requires good time-

frequency resolution, traditional STFT ceases to be productive, since STFT

can either provide good frequency-resolution or good time-resolution.

3.3.2 GABOR TRANSFORM & ZAK TRANSFORM

Another technique which overcomes some pitfalls of the STET is the
Gabor transform (GT). Gabor's model, put forward in 1946 [66] is one of
the known mutually nonorthogonal representations originally proposed for
description of temporal signals in a combined time-frequency space in

communications; and it is given by

fO=3 Ya, 2. (3.11)

where g (t)=g(t—n)e”™, with g(t)= e™ as a basic window, the
expansion coefficients a,__, called Gabor coefficients, are related to the
complex spectrogram of the sampled signal on a Gabor lattice [66], or to a
sampled cross-ambiguity functions. The interest in the Gabor expansion
stems from the fact that the Gabor bases (g,,,) are well localized in both
time and frequency as well as they are easily generated through a simple
time-frequency shifts. However, important issues which may arise when
dealing with GT are the completeness, the linear independence and
orthogonality of the Gabor bases [67-69].
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If completeness of the Gabor bases g, . (r) is assumed, then the
biorthogonality condition [70]

If(t) g'(t =nt) e dt = 8[n] 8[m] (3.12)

is sufficient for the perfect reconstruction condition, where

1 k=0
S[kl1=<" 3.13
[£] {O, k+#0 G19

It is to be noted that Eq.(3.12) is related to a function called the cross-

ambiguity function (or the complex spectrogram), see Appendix A, and it

is given by
a(t,m)= Tf(t)- g (t;T,0)dt (3.14)
where g*(£;7T ,@) is a shifted analysis window, given by
g (tt,0)=g"(t—1)e™ (3.15)
Thus the expansion equation of Eq.(3.14) can be written as
f(t)= i T ]:a('c,o))- g(t;T,0) dt dw (3.16)

The major tool in getting a discrete version of Eq.(3.16) is the so-called

Zak transform [67], which is given by
Z(f)(xy)= X f(y—n)e™™ (3.17)

H=—ca

Daubechies et al. [71] have shown that frames (Appendix A)
{(f,gmﬂb>:m,neZ} exist if and only if a,b <1, and tight frames in

;, where || g”2 is the second order

such a case exist with A =(1/ab)-|g|
norm of the function g (consult Appendix A). The critical value, a-b =1,
by Balian's theorem [72], requires that a reference signal g neither should
be very smooth nor should decay very fast. Thus, normalizing and
choosing a=>b=1 in this investigation and considering only integer
lattice and lattices containing this integer lattice as sublattices, the Zak

transform of Eq.(3.11) yields
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Z(f)(xy)=2(g)xy) ¥ Ya, ™ (3.18)

m=—oc0 f==—00

where the Gabor coefficients can be rewritten as

”'Z(f) x,) o 2t im) dxdy (3.19)
)

Auslander and Tolimieri [73] have shown that Z(g)(x, y) has a zero in

the unit square. Hence, in general, there is no way to relate the finite signal

energy to the sum of the squares of @, which may be infinite, i.e.

f F@fde# Y Yla[ (3.20)

M==—00 f==—00
However, Jensen et al. [72] discussed a double series representation of a

bounded signal. A new regularized algorithm to compute the coefficients

a, ., which avoids the zero problem without affecting the resolution of the

reconstructed signal, has been developed [70]. The mathematical

formulation and the algorithm can be represented as follows. For a finite
duration function f which vanishes outside the interval [O,N ], the two

dimensional expansion of M X N array is given by

f(m,r)=f(z=+r), 0Ssm<M,0sr<N (321
Thus, the corresponding Zak transform is

207 )rt) = 3 £ myr)e 0™ 622)

where 0Sn< N ;0<m< M.

The above transform can be formed by utilizing the two-dimensional

Fourier transform. Bearing in mind that since g  (the basic window)
generates a tight frame, then the following equation is set forward as a
consequence

|Z(g)(x,y)l2 =A>0 (3.23)

and also the Gabor coefficients are
4, =ANf 8o (3.24)
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On the other hand, expanding the periodic function |Z(g)(x, y)l2 asa

double Fourier series yields

|Z(g)(x,y)l2 _ Z Zcm e[j2ﬂ(n.r+my)] (3.25)

mM=—cs N=—oo

where
=(g.8m) (3.26)
Thus, Eq.(3.26) becomes

(f’gmﬂ)z i icm—r,n—s.ars (327)

Fr=—o0 $—=00
which represents a double convolution and, in general, not an easy task to

perform. For digital computation, while assuming f is of finite duration,

Eq.(3.11) can be represented as
M-1N-1

fO=>Ya,g, (), M>0, N>0 (3.28)

m=0 n=0
Taking the Zak transform of the above equation, while sampling at
xX=7,y=%,05r<N, 0<s5< M yields

Z(f W& =Z(g) 4N,M)g§0a 7Pl (3.09)

Upon deconvolution, the above equation yields

e [~ j2n(nx+my)] PRI [~ j2x(nx+my))
Y S{f g T = |Z(g)(x,y) X X4, €T
m=0 n=0 m=0 n=0
(3.30)
Letting
Z L,L
7 -2 s
Z(g) )
Then, Eq.(3.29) becomes
M-1N-1 , e
=3 Ya,, el ) (3.32)

m=0 n=0
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Finally, Gabor coefficients are computed from the above equation by
inverting a Vandermonde matrix.

Fig.(3.1) shows a flow chart for the algorithm used to compute the
Gabor coefficients after Auslander [70]. This algorithm is implemented via
a FORTRAN program, Appendix B, to compute the GT for the signals
under consideration.

It is to be pointed out that the Gabor coefficients @, are a smeared

version of the actual time-frequency representation. Hence, to increase the
frequency resolution, a wider window g°(¢) is needed, i.e. transient effects
occurring during this window will be smeared out in time and frequency as
well. Thus, the length of the window is again a compromise between

frequency resolution and time resolution.

3.3.3 THE WAVELET TRANSFORM

An alternative JTFA method which overcomes the many pitfalls of both
STFT and GT, is the wavelet transform (WT). The WT can be interpreted
as a tool that cuts up data or functions into different frequency components,
and then studies each component with a resolution matched to its scale [6].
Two major WT methods, which are of practical interest to study
nonstationarity signals, include wavelets of the time-frequency type and
wavelets of the time-scale type. Time-frequency wavelets are suited, most
specifically, to the analysis of quasi-stationary signals, while time-scale
wavelets are adapted to signals having a fractal structure, and they are of
special interest in the multiresolution analysis where a vast range of scales
for signal analysis is used [5]. Another broad classification of WT was
given by Daubechies [6]; the continuous wavelet transform (CWT) and the
discrete wavelet transform (DWT), which can be further classified into

redundant discrete systems (frames) and orthonormal basis of wavelets.
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The continuous WT, firstly given by Grossman and Morlet [74],
assumes that any time signal can be decomposed cannonically into a
combination of time-shifted and dilated or compressed basic wavelets;

accordingly WT is given by

oo

1 t-b
WT,, = e | x(t)h(T)dr (3.33)

-0

where the wavelet function A(f) is an appropriate window (called basic or
mother wavelet) like the modulated Gaussian. Hence, the WT can be
defined as the convolution of a signal x(¢) with an analysis window h(t)
shifted in time by b and dilated by a scale parameter a. The scale
parameter a can be chosen such that it is inversely proportional to the
frequency. The factor |a|_0'5, according to the theory of frames, is used to
ensure energy preservations and it is called the normalizing factor [75,76].
In structural dynamics, the normalizing factor, which is obtained by
correlating the signal with a sine function and equating the correlation to
1.0, is usually chosen to be 1/a . The purpose of WT is to extract the
localized conditions of the signal labeled by the two parameters a and b
and then the signal can be computed by expanding it into a family of
functions (tight frames), i.e. into a set of frequency channels of equal
bandwidth on a logarithmic scale [75,76].

In comparing Eqs.(3.8) and (3.11) with Eq.(3.33) it is obvious that,
whereas the STFT and the GT use a window of constant width and
envelope, the WT uses an analyzing window (the basic wavelet) scaled in
time and magnitude to have a fixed number of oscillations inside the
envelope. Thus, for high frequencies, the basic wavelet is compressed in
time, while for low frequencies it is dilated in time. This notion results in
good time and frequency resolution of the WT up to theoretical Nyquist
frequency. The time-frequency resolution are shown in Fig.(3.2) for

comparison [77]. In addition, it is to be noted that whereas the analysis
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window in the STFT works as a lowpass filter, it is a bandpass filter in the
WT [77].

In general, the mother wavelet may be taken as any waveform; however,
the best JTFA resolution is obtained if the mother wavelet is optimally
localized in both time and frequency.

The discrete version of Eq.(3.33) (DWT) according to Daubechies (6] is
given by

mJn

WT,, =a;™ [x(t)h(a," t —nb,)dt (3.34)

where a =a; and b=nbya, ,fromEq.(3.33) with m,n € Z. Thus, the
family of the generated wavelets can be written as
h,,(t)=a;"" h(a,"t —nb,). (3.35)

On the other hand, good time-frequency properties can be achieved if
discrete values for a and b are chosen such that, the parameter @ is
chosen to be equal to 2/ where i is termed the octave of the transform [78-
81], and the parameter b is taken to be a multiple of a, in particular,
(b=n2"). This choice, provides among others, the availability of
zooming while moving from one scale to another in the sense of halving or
doubling the scale as well as providing orthonormality of the frames
(wavelets family) on I’ (R) when combined to the nature of the wavelet
window (mother wavelet) itself. It is to be noted that when the frame
(family of wavelets) constitutes an orthonormal basis for I*(R) (where
[?(R) is the Hilbert space of the square integrable functions), then they
are typically appropriate for multiresolution analysis [5].

In our investigation, the flow induced vibration signals are analyzed
using the above discretization with @, =2 and b, =1, respectively. It is to

be noted that the Grossman-Morlet wavelets of the form

h,()=—=h=Y), a>0, beR (3.36)
a

Ja
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and the wavelets of Daubechies that have the form

b (1)=2"h2't- ), i,jel (3.37)
are two cases of time-scale algorithms. However, Gabor-Malvar wavelets
of the form

b (t)=o(t—Dcos[rn(k+1/2)(t=D)], keN,leZ (338)
is considered as time-frequency algorithm. In general, mixing the two
points of view and subjecting the Gabor-Malvar wavelets to dyadic dilation
leads to the construction of the Daubechies wavelets.

Moreover, it should be emphasized that the selection of a suitable
window (wavelet) for the application under consideration is not a trivial
matter. The selection of an appropriate wavelet is intensively discussed by
Rioul and Tewfik et al. [82,83]. However, some mother wavelets of
interesting features, which are frequently used, are introduced in the sequel.

(1) One cycle of the sine-function wavelet, which have the form

Jl—smt if [f{ <7

h(t)= (3.39)
0, otherwise
The Fourier transform H of 4 is given by
H(®) = ‘/5 Slm 2')“) (3.40)

(2) Mallat wavelet [5], which is developed originally to be used in

computer vision applications, is defined as

e F(w/2)+T
H(@) == [F(oa)F(cn/Z)) G40
where T is a delay factor, and
_ Ny(0)+ N, (w) (3.42)

F(®) = 65sin(w/ 2)
N,(®) = 5+30c0s? (@ / 2) +30(cos? (0 / 2))(sin(w / 2))

N, (@) =2(cos?(w/2))(sin* (@ / 2)) + 70cos* (w0 / 2) +%sin6(w /2)
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(3) Daubechies [6,84] constructed the following tight frame wavelet,
consulting Appendix A for tight frames,

(0 w<l
T ( o-I
sin| —V| ——— [S®w<a,l
2 \a,—1)
-2
H(w) = (loga,)™* / (3.43)
T -1 )
cos| —V| ——— || a,l<ayl
2 \lay(a,—1)
0 o = all
where,
27
[= 3.44
b1 A
and, v is a C* (or C™) function from R to R that satisfies,
(x) = 0 if x<0 3.45
VA= i 221 (3.43)
as an example of a (C') function V is
0 x<0
v(x)=<sin’(x m/2) 0<x<1 (3.46)
1 x21

and this construction leads to a family of tight wavelet frames with no
restrictions on the choice of the parameters ag,b, other than g, > 1 and

by # 0.

(4) Meyer [85] used Daubechies' wavelet and constructed another one

which is appropriate for multirescale analysis and it is given by

H (w)= L e (H(w) + H(-®)) (3.47)

V2n

where, H () is Daubechies’ wavelet.
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(5) The modulated Gaussian wavelet, which was most often used by
Morlet [74] in analyzing seismic data and in his numerical computations,
is given by

h(t) = Y4 (et e-m?,fz) e—:zl2

H(o)=m (e @2 — gl g0 12)  (3.48)

The subtraction term in the definition of k, H ensures that H(0) = 0; for
the value of W, chosen here, this term is negligible in practice. The value
of W, has been fixed so that ratio between the highest and the second
highest local maxima of Re[h] is approximately 1/2.
Kadambe and Boudreaux [86,87] used the modulated Gaussian wavelet
with

o =T(2/1n2)"? (3.49)

(6) The Mexican-hat wavelet, which is the second derivative of the

Gaussian e~ /2 [84]. If we normalize it so that its I?-norm is 1 ,we obtain

h(t) - in—lﬂl (1_t2)e—r212

V3

H(®) = in""‘ w?e @ (3.50)

NE

and if this function is plotted and rotated around its symmetrical axis, then

one obtains a shape similar to a Mexican hat.

(7) The eighth derivative of the Gaussian wavelet, which functions like the
Mexican hat [84], is appropriate in applications of the wavelet transform

to edge detection; and is given by
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2157' 1/2 X
h(r)z(—lgr') V4 (% —281° +210¢* —450¢% +90)e™ ' /2
1571\/2 2
H(w) =(2157{) V4 @8 e @2 (3.51)

(8) The harmonic wavelet, which was recently introduced by Newland

[4,9], is given by
H(r) ==

jamt _ _j2nt

€
j2n¢t

1/2n, 2rn<m<4n

H = 3.52
(@) {0, elsewhere (552)

In this case, the basic wavelet is complex and only the real part should be

used for the analysis of real signals.

When any of these different basic wavelets is employed, the DWT

Eq.(3.34) in the frequency domain takes the form
WT,, =YY a7 [’ H(ajw) X () do (3.53)

L41]
where m,n€Z; F and H are the Fourier representation of the analyzed
signal and the chosen wavelet, respectively.
Moreover, for the harmonic wavelet, Eq.(3.52), the discretized version in

the frequency domain is simply

1/(2n(n— , 2ZTEM<n2n
H,_(0)= @r(n—m), m " (3.54)
0 elsewhere

where n,meR". However, the DWT, Eq.(3.34) in the time domain
cascades into two sets of coefficients, one is real (WT,, , , ) while the other

is complex (WT,: . )» and they are given by

WT,,, =(n—m)[x(t)h,, (1 =) dt (3.55)
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L) dr (3.56)

KH—

WT,,, =(n—m)[x(t)h,,(t -

where n,meR*, ke€Z, and WT,, , is the complex conjugate of
WT,, ., if x(t) is real [4].

A FORTRAN program (shown in Appendix B) was written to find the
WT after Abu-Samak [13], the algorithm used is shown in Fig.(3.3).

3.4 LITERATURE SURVEY.

Far away from Gabor's classical algorithm [66], Genssar et al. [88]
developed an iterative algorithm, called Gabor's iterative algorithm, to
calculate numerically Gabor's coefficients. This iterative algorithm was
examined for convergence via a method developed according to the theory
of digital signal filtering. It had been shown that the algorithm convergence
was conditional on the selected type of the window function. For example,
when using the Gaussian window (as proposed by Gabor), the algorithm
converged only for specific signals. Thus, convergence conditions for the
algorithm were formulated, permitting the examination of alternative
windows.

In there investigation using the continuous wavelet and Gabor
coefficients in the asymptotic limit and under some additional assumptions,
Delprat et al. [89] had shown that it was possible to extract some important
characteristics of nonstationary signals, like for example instantaneous
frequencies and amplitude modulation. However, they also reported that it
was difficult to isolate components that strongly interact in the time-
frequency plane.

While examining the acceleration of the frame algorithms, Grochenig
[90] had developed a polynomial acceleration technique which improve

and accelerate the frame algorithms. This technique was used with frame
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algorithm to analyze and reconstruct signals from wavelet theory and from
Gabor theory.

For generalizing the Walter sampling theorem (a new version of the
classical Shannon sampling theorem), Janssen [91] used the Zak transform
for wavelet subspaces. He considered a cardinal series based on signal
samples f{(a+n),ne€Z with a possibly not equal to zero (Walter's
sampling). Also, he had shown that the stability of the results depends
critically on a.

Moreover, Grossman et al. [10] had indicated that the 3D-wavelet phase
plot (m,n and F, ), which is given by

P =tan™ M (3.57)
- Re<x,hmﬂ> ’ '

is particularly suited to singularity detections.

More recently, Newland [4,9] introduced the so-called harmonic
wavelets, which he proposed to be a useful tool for the analysis of
nonstationary signals especially in the field of vibration measurement and
analysis. This wavelet was implemented to analyze some practical
examples, and similarities between the wavelet time-frequency maps and

the sonograms was deduced.
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CHAPTER 4
CHAOS

4.1 INTRODUCTION

Any system that is inherently unpredictable may show chaotic behavior.
The word "chaos" is derived from the Greek word "Y00{" which
originally means, according to the Encyclopedia Britannica, the infinite
empty space which existed before all things [92].

When considering physical systems, which show random response,
chaos may be evolved. However, even linear time dependent processes
may show chaotic behavior for certain system parameters, when exposed to
random forces [93]. Also, solutions obtained for deterministic differential
equations, through simulation, have shown random like properties for
linear as well as nonlinear systems in many research fields. However,
random responses for several systems which look chaotic are found to be
deterministic [94,95].

Thus, random responses of nonlinear systems may indicate chaotic
behavior [94,95]. Even for a nonlinear dynamic system whose response is
described by a deterministic equation, chaos may exist, since the response
becomes unpredictable because of the nonlinearity amplifications of the
initial conditions [93]. Also, of special importance is the emergence of
chaos in deterministic strongly nonlinear dynamical systems.

In order to study nonlinear differential equations both qualitative and
quantative techniques can be employed [96,97]. Qualitative techniques
such as phase space, Poincaré map and stability analysis are mainly
concerned with the general stability characteristics of a system near a
known solution, rather than with the explicit time history of the motion.

However, quantative techniques such as perturbation methods, numerical
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integrations and averaging methods can yield reliable results provided that

the system exhibits only weak non-linearities. For strong non-linearities

several algorithms have been developed, among them the Fast Galerkin

method (FG) which utilizes the FFT [98], the incremental harmonic

balance [99] and the alternating frequency/time method [100].

4,2 CHAOS DESCRIPTORS.

Chaotic behavior may be identified by a qualitative change using one or

more of the following criteria [93,101,102] :

L.

Time History : For typical dissipative systems, a start-up transient
appears after which the motion settles down to a long-term recurrent
behavior. When the motion is periodic, it is repeated at regular
intervals. However, when it is chaotic, it has a random-like
appearance (i.e. the time history looks chaotic).

Power Spectrum : Power spectrum can be used to distinguish
between periodic and chaotic responses. It is well known that for a
periodic motion, discrete frequencies dominate the power spectrum,
while for a chaotic motion, it is continuous, although peaks may be
observed in such a process. In general, both periodic and quasi-
periodic responses show discrete power spectra, whereas chaotic
response show a continuous power spectrum.

Autocorrelation : The behavior of the autocorrelation function can be
helpful in identifying the presence of chaos. For a periodic motion,
the autocorrelation function is periodic, while for a chaotic motion, it
decays to zero as the time shift approaches infinity(T — o).

Phase Plane Portrait : It is a direct implementation of the geometric
theory of nonlinear systems and it is useful for second order systems,

because the phase space is reduced to a phase plane with trajectories
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projected on it. A trajectory of motion forms a closed orbit when the
motion is periodic, while it is very complex for a chaotic motion.

5. Poincaré Map : The Poincaré map in the phase plans, as given by
Ueda [103], is the transformation of the (x, X)-phase plane into itself
according to P:(x,,%,) — [Jc(l‘O +1),X(%, +’C)], where T is an
appropriate period (forcing period) and x,,X, are the initial
displacement and velocity, respectively, at? ={,. For autonomous
systems, a more general Poincaré map is given by Dowell [101}]. In
general, Poincaré map is defined by the intersection points of the
orbit with a hyperplane in the phase space. The Poincaré map strobed
points indicate the periodicity of the response if it is existed. Thus,
for a harmonic motion, a single point is presented in the Poincaré
map, whereas for N-subharmonic motion, N-points are presented.
However, for a chaotic motion, the map has a complex fractal
structure. In general, the stroboscopic phase points are restricted to a
well defined regions, which is sometimes called the strange attractors

of the system.

4,3 PROPERTIES OF CHAOS

To investigate chaotic motion in a proper way several concepts and

procedures should be pointed out.

4.3.1 CHAOQOTIC ATTRACTORS

For a dynamic system an attractor is a point (or object) towards which
all nearby solutions move as time evolves. An important parameter for
studying chaos is chaotic attractors (strange attractors) which are simply

the geometric points in state space to which chaotic trajectories are
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attracted. More precisely, a chaotic attractor can be identified as a stable-
structure of long-term trajectories in a bounded region of phase space,
which folds the bundle of trajectories back onto itself, resulting in a mixing
and divergence of nearby states [93]. Attractors can be classified into three
categories; equilibrium (point), periodic (cycle) and chaotic (mixing),
which represent the commonly observable attractor in dissipative systems.
Multiple attractors are common in nonlinear systems where more than one
type of attractors are coexisting. More recently, another type of attractors
was reported [104,105]; strange non-chaotic attractors.

The type of attractors to which the motion settle to, depends on the
initial conditions. Thus, a closure of the initial conditions for which the
system will asymptotically approach a particular attractor is called the
basin of attraction of the attractor or its catchment region [106-109].

4.3.2 STRUCTURAL STABILITY AND BIFURCATIONS

Stability can be investigated by two different means, the first is to
consider the persistence of the behavior of a motion if the initial conditions
are perturbed, while the second is to consider the persistence of the
behavior of a system if the dynamical system itself or even its parameters
are perturbed (structural stability).

Under the first category, a solution is called stable in the sense of
Lyapunov if the solution ¢_(X), T=0, depends uniformly and
continuously on the N-dimensional matrix X; thus for any € > 0 (¢ € R)
there exists a  O(€)>0 such that if d(X,,X)<d and T20, then
d(0.(X,),0.(X)) <&. Otherwise the solution is unstable. In the case of

periodic solutions orbital stability is of more concern. The motion is said to

be orbitally stable if the unpertubed solutions are periodic functions of

time, showing closed trajectories (limit cycles) C in the phase space and
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every trajectory in the neighborhood of C tends to reach this closed
trajectory (limit cycle). However, if the there are trajectories tending to
leave the neighborhood of C, the solution is said to be orbitally unstable.
Another type of stability is that in the sense of Lagrange; it only requires
that the solution to be bounded to acquire stability, and it is unstable
otherwise.

Another approach as said previously is the structural stability.
Guckenheimer and Holmes [110] defined small perturbation of the

dynamical system as follows. If F is amap or a vector field, then G is a
(C',&)-perturbation of F if there is a compact set M, C M such that

F=G on M- M_andd(F,G)<Eg, d*(DF,DG) <€ on M, where
d and d” are appropriate distance functions. Also, two C"-maps are called

C*-conjugate or C*-equivalent (0< k <r), if there exists a C* -

homeomorphism #  such that #o F = G o h. C’-equivalence is termed
topological equivalence. Two C-vector fields f and g are said to have
C*-equivalence (0<k <r) if there exists a C*-diffeomorphism % which
takes orbits q;: (X) of f to orbits $2(X) of g and preserves senses but not

necessarily parametrization by time. If 2 preserves parametrization by
time, then it is called conjugacy. A C"-map F (or equivalently a C"-vector
field f) is called structurally stable if there is an €>0 such that all
(C',€)-perturbations of F (or F) are C°-equivalent to F (or f).

Also, a bifurcation can be defined as a situation in which a dynamical
system is not structurally stable. Bifurcations of stationary and periodic
solutions are called local bifurcations if only some neighborhood of these
solutions needs to be considered. Bifurcation values are usually termed for
the parameters at which bifurcations occur. Moreover, the pair of a
bifurcation value and a corresponding stationary solution of a differential

equation or fixed point of a Poincaré map is called a bifurcation point.
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4.3.3 STABILITY AND LYAPUNOV EXPONENTS

A solution of N-dimensional coordinate dynamical system described by
the set of equations X = V(X,?) with initial conditions X(#,) =X,, where
X ={x,%,,..., Xy 1" represent the variables of the N-dimensional phase
space, and V=[v,V,,...,Vy ]T gives the coupling between the variables,

and is determined by the phase flow,
—X-(t) = q);,;o (io) (4'1)

where ¢, is the evolution operator which maps the state X, at time 7, to
.t 0 o

the state X at time f. Small perturbations on the initial conditions are
introduced to study the stability of this solution. Thus, the derivative of ¢
with respect to the initial conditions is obtained as

onq) = onq)t,to (io) (42)

It is to be noted that this derivative maps the elements of the tangent
space 7. M to the tangent space T M. This transformation can be

obtained by integrating the matrix differential equation
d =2 =¥ &3 —
E[D-‘Oq)”o (XO)] = va(x’t)onq):,ro (x{)) (43

with the initial conditions
D ¢, ,(%)=1 4.4)
where I is the identity matrix. These equations, termed the linearized or

variational equations, determine the stability of a solution in typical cases.
If DXO(I) grows at an exponential rate as f — oo, the solution is unstable,

since small perturbations will be augmented, whereas if onq) decays at an

exponential rate the solution is stable.
In order to study the stability of stationary solutions of autonomous

systems, the above equations can be integrated as

D, o, (%,)= e DY Rot=h) (4.5)
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It should be emphasized that the eigenvalues of D V(X,) indicates the
stability of the solution. If all the eigenvalues have a negative real part, the
solution is stable, while if atleast one eigenvalue has a positive real part
the solution 1is unstable. Typically, the stability of periodic solutions
depends on the eigenvalues of the amplification matrix (mondromy
matrix), D, ¢, ,,, (X,), where p is the period of the periodic solution. In
this case, if all eigenvalues of the mondromy matrix have a modulus
smaller than one, the solution is stable, whereas if some eigenvalue has a
modulus larger than one, the solution is unstable. It is to be noted that in
the autonomous case, although the mondromy matrix has an eigenvalue
equal to one, this does not affect the stability of the solution but it means
only a shift in time.

For systems which have nonstationary or aperiodic responses, average
rates of divergence and convergence are investigated by generalizing the
idea of the eigenvalues of the linearized equations, and implementing the
Lyapunov ckponents (characteristic exponents). The Lyapunov exponents

can be defined as

A(8X) =limsup In | D0 (io)gﬁ” (4.6)

- (t- to) "62”

where OX is a vector in the tangent space T, M . Noting that, because

(%) +A(6%?) < max{A(8%®) +A(5x?)} @

and
A(00X) = A(8X) (4.8)
we can define linear subspaces of 7, M,
S, ={8x[A(3%) < o} (4.9)

This implies that there are at most /N -different Lyapunov exponents,
namely the values of O at which S, changes its dimension. If the flow on

the attractor is erogdic (stationary and the ensemble averages are invariant
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irrespective of the time history), we can take the ordinary limit in the above
definition in a great generality and the values of the Lyapunov exponents
are almost independent of initial conditions [111].

Negative Lyapunov exponents correspond to decay of perturbations of
initial values, where as positive Lyapunov exponents correspond to
amplification of perturbations of initial values. For stationary solutions, the

Lyapunov exponents are only the real parts of the eigenvalues of D v(X,).

For periodic solutions the Lyapunov exponents are
A, = IH[M] (4.10)
p

where the |l are the eigenvalues of the mondromy matrix and p is the
period. For quasi-periodic solutions, some Lyapunov exponents can be
zero, while the other ones are negative. For aperiodic attractors, some
Lyapunov exponents may be positive, which points a sensitive dependence
on the initial conditions.

Tt is to be noted that in any chaotic region, the distance between nearby

** in the phase space, where A isthe

orbits grows approximately as e
Lyapunov exponent. A positive value of the main characteristic exponent

may indicate the existence of chaos [112,114].

4.3.4. FRACTAL DIMENSION

The Lyapunov exponent expresses the dynamical nature of the chaotic
regime. A quantity related to static properties and describes the geometry
of the strange attractor is the fractal dimension [115,116]. The importance
of the concept of fractal dimension to the field of chaotic vibrations 1s that
it can predict the number of independent variables that may ultimately be
needed to model the observed chaotic motions in physical problems. More

than one definition of the attractor dimension are available [117,118].

TW T Wiy LW T LI WATGAL WEILEIWILTEVIILE WL RV R TWALIWAM W LEEMLES WELIWAY ALVL 1% T ALl taaws

fractal dimension of the dynamics of the process, because the Poincaré map
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lies only in two dimensional space, whereas the process may require more
than two dimensional space in order to represent the qualitative features of
the dynamics of the process. Thus, to describe the fractal dimension
properly, the system degrees of freedom should be found. For systems with
unknown degrees of freedom a pseudo-phase space (embedding space)
should be constructed using delayed measurement of state variables. The
choice of the dimension of the embedding space is very important and
should be larger than the minimum degrees of freedom that are required to

describe the dynamics of the system [93].

4.4 RouTES To CHAOS

In many physical systems, as some control parameters in the governing
equations of motion vary, several characteristic changes in the motion may
occur due to bifurcations that can lead to chaos. The bifurcation types
leading to chaos are the infinite period doubling cascades, the
intermittencies and the crises.

The period-doubling route to chaos is the most widely known and
studied [120]. In this case, a typical controlling parameter leads the
dynamical system through a sequence of successive bifurcations in which
the period of all solutions at each step of the bifurcation is twice that at the
previous step: thus, this process is called a period-doubling cascade. A
common feature of a chaos is a succession of bifurcations to higher and
higher subharmonics as a parameter is varied. In some systems, chaos
occurs as a sequence of period-doubling bifurcations with alimit point
beyond which strange attractors occur.

The second type of routes to chaos involves the intermittency.
Intermittency bifurcations to chaos are caused by discontinuous or

catastrophic disappearance of a periodic attractor inside a phase space
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defined as follows. If a dynamical system with a set of equations of motion
X =V(X,1), where X =[x, X,,...,Xy ]” represents the variables of the N-
dimensional phase space, and V=[v,V,,...,Vy ]T gives the variables
coupling, is considered. The system can be described by N-Lyapunov
exponents A; (i=1,2,...,N) ,andif Z:il A; > 0, then the system never

. N .
reach any attractor, however, if Zm?\,i <0 ,then the evolution of the

system takes place in a limited subspace of the phase space. Thus, the
attractor of the system is a specific subspace which is asymptotically
reached in time. Any attractor which is bounded by a piecewise smooth
closed surface volume and not a finite set of points, a limit cycle, and a
piecewise smooth surface (such as torus), is called a strange attractor. A
chaotic attractor is an attractor with at least one positive Lyapunov
exponent, whereas a strange non-chaotic attractor is one for which the
geometrical structure is strange as well as no positive Lyapunov exponents
is encountered [103].

Levitas et al. [132] proposed the simple cell mapping method (SCM) for
global analysis of nonlinear dynamical systems. SCM introduces a spatial
Poincaré sections in the state space of the dynamical system, subdivision of
these sections into cells and construction of acell-to-cell mapping. The
ultimate advantage of this method is its reduction of the cell array size
needed in calculations, and thus it is especially appropriate for studying
multi-dimensional dynamical systems. This method was tested in R? and
R* state spaces and it showed accordance with previous methods with the
advantage of considerable saving in computer time as well as computer
memory in addition to improvement in the accuracy of the calculations.

Healey [133] claimed the discovering of amechanism for generating
chaos in boundary layer transition through investigating a laminar flat plate
boundary layer undergoing transition to turbulence. Disturbances were

introduced via a loudspeaker embedded at some upstream location and the
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hot wire anemometry technique was used for velocity measurements. A
new technique was used to estimate the number of nonlinearly independent
modes in the reconstructed phase portraits, and nonlinear maps were then
fitted in order to model the spatial evolution of disturbances.

Sekar and Narayanan [11] investigated by the Fast Galerkin (FG)
method and numerical integrations the response of a square prism modeled
as a Duffing oscillator subjected to harmonic and flow induced excitations.
The system was found to undergo a symmetry-breaking bifurcation
followed by a cascade of period-doubling bifurcations which set the system
to chaos. The initial period-doubling as well as the symmetry-breaking
points were obtained by studying the movements of the eigenvalues of the
mondromy matrix. The FG solutions were found to match exactly the
numerical integration solutions, because of the sufficiently high number of
harmonics retained. This modification to the FG was firstly introduced by
Cameron and Griffin [134]. The chaotic solutions were confirmed by the
strange attractors, the continuous power spectrum and the existence of
positive Lyapunov exponents. Apart from the period-doubling route to
chaos, the system entered the chaotic region through the crisis type
instability. The parametric space between the free stream velocity and the
dimensionless force coefficient was constructed in which the boundaries of
symmetry-breaking, period-doubling bifurcations and chaotic regions were
identified.

Li and Paidoussis [12] studied the nonlinear dynamics of a standing
cantilevered pipe conveying fluid. Perturbation techniques were used to
eliminate inertial non-linearities, and then Galerkin's method were used to
discretize the system and reduce it into a four dimensional one. The center
manifold, averaging and normal forms techniques were implemented in
order to simplify the dynamics form, thus the main behaviors of the

dynamic system, in the vicinity of the double degeneracy could be
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obtained. It was found that a degenerate point is associated with a
subcritical pitchfork bifurcation as the buckled pipe under its own weight
regained stability for some critical flow. Another degenerate point was
associated with a Hopf bifurcation suggesting the onset of limit cycle
motion and flutter. These two bifurcations coincide in a doubly degenerate
point. Simulations in the neighborhood of the double degeneracy for both
autonomous and nonautonomous systems were carried out, then phase
orbits bifurcation diagrams and Lyapunov exponents calculations were
used to show consistency with the analytical predictions of periodic, quasi-
periodic and chaotic oscillations. It was found that chaotic oscillations of
the autonomous version of the system existed when the gravity parameter
was sufficiently perturbed off the doubly degenerate point. The harmony
between analytical predictions and simulations was not complete; since,
despite the analytical predictions of hetroclinic orbits for the reduced
system, the actual bifurcation observed in simulations were homoclinic,

with associated subharmonic bifurcations which lead the system to chaos.
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CHAPTER S -
EXPERIMENTAL SETUP & PROCEDURE

5.1 INTRODUCTION

The experimental work in this investigation is concerned with the study
of the time series of the vibration signal (acceleration) of the elastically
mounted circular cylinder subjected to cross-flow. In what follows a
description of the apparatus and instrumentation used as well as the
measurements techniques is presented.

It is to be pointed out that basically the same experimental set-up, as
described and studied by Al-Bedoor [135], Hijawi [136] and Abu-Samak
{13], has been used in this work with the addition a digital data collection

and processing system.

5.2 APPARATUS

The experimental investigation was conducted in an open suction type
wind tunnel with a square cross section area of 30cm X 30cm, and of length
equal to 200cm, Fig.(5.1). The flow rate was controlled via a double
butterfly valve, and was generated from a fan driven by a 5.6kW , 3 phase
motor which rotates at 2900 rpm. With these facilities, it was possible to
vary the free stream velocity from 4.5 to 27m/s, with the free stream
turbulence intensity level below 0.35%.

5.3 THE TEST MODEL

The test cylinder was placed at 1.3m from the inlet of the test section

were the flow was found to be fully developed. The range of Reynolds
numbers used was approximately 6.12 X 10> < Re <3.78x10*, based on
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the outside diameter of the vibrating cylinder. In this range, the Strouhal
number for a circular cylinder is 0.2. The test cylinder was of an aluminum
tube with cross section of outer diameter D=21.5mm, wall thickness
t=0.5mm and length L=440mm. This combination yields an aspect ratio
L/ D of 20.5 and mass per unit length 7 of 0.1662kg/m.

The cylinder mountings used in this experiment are similar to those used
by Shirakashi et al. [60]. The cylinder was suspended by two similar
clamped plates at its ends, Fig.(5.1). The end plates were placed outside the
test section of the wind tunnel to avoid interference with the flow. By
adopting this sort of mounting one would minimize the mode coupling
effects which may arise from the streamwise and the rotational motions.
Motion in the horizonta! direction for this mounting is difficult to excite
since the plate axial rigidity is much higher than its rigidity in the vertical
direction, i.e. the horizontal vibration natural frequency of the cylinder for
this mounting is much higher than its natural frequency of the vertical
vibration. The cylinder passed through two slots of 28mm X 28mm of the
wind tunnel. Note that careful considerations were taken to ensure the two
dimensionally of the vortex wake. This was achieved by making the height
of the slots at the two sides of the wind tunnel to be much less than nearly
four times the diameter of the test cylinder, as was recommended by
Graham [137]. This was confirmed by preliminary tests. In order to
eliminate the influence of the flow through the slots, blocking plates were
attached to the cylinder at both ends. This technique relies upon the
isolation of interference effects that arise as a result of the interaction of the
tunnel boundary layer with the cylinder [138,139]. Fox [140] reported that
the rectangular plates should have an upstream dimension (distance of
lJeading edge from the cylinders axis) sufficiently large to isolate the
horseshoes vortex generated at the wall-cylinder interaction, but small

enough to avoid substantial boundary layer growth on the plate itself, and
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tail dimensions adequate to prevent any wake interference. Using this
concept the end plates were squared in design with an area of 7d X 7d with
the hole to accommodate the cylinder is at 2.5d from the leading edge of
the plate as shown in Fig.(5.2). On the other hand, Fig.(5.3) shows a photo

for the end plates arrangement.

5.4 INSTRUMENTATION

An accelerometer type (B&K 4370) was attached to the left side of the
test cylinder as shown in Fig.(5.1). The output signal from the
accelerometer was simultaneously fed to a portable conditional amplifier
type (B&K 2626) to reduce aliasing effect, the signal from the conditioning
amplifier was fed to a lowpass filter with cutoff frequency equals to two
times the sampling frequency. The output of the conditional amplifier was
in turn fed to a (Gateway-2000, SMB-RAM) computer via an interface card
type (NI Lab PC+). The free stream velocity was measured by an inclined
alcoholic Pitot tube at the fully developed flow region of the wind tunnel.
This instrumentation scheme is shown in Figures (5.3-5.4). A digitizing
oscilloscope type (HP 54501A) was used to check the results on the PC. A
schematic diagram for the test cylinder is shown in Fig.(5.5). In addition,
Fig.(5.6) shows schematicaily a flow chart of the instrumentation setup

used in this work.

5.5 EXPERIMENTAL PROCEDURE

The natural frequency f, and the logarithmic decrement O of the test
cylinder were determined by impulsive test, wherein the cylinder was set

into vibration by slightly tapping its center.
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The free stream velocity was measured using an inclined Pitot tube
placed at 1D in the horizontal direction and 2D in the vertical direction
from the static equilibrium position at the mid point of the oscillating
cylinder. Various time series were chosen for different free stream
velocities. The digitization of the time series by the computer program was
carried out at a sampling rate that obeys the Nyquist formula, given by

f:22f, 5.1)
where f, is the sampling frequency. Noting that the natural frequency f,
of the cylinder in the transverse direction 1is about 120Hz, the sampling
frequency f, was chosen to be 4000Hz. This sampling rate was found to be
satisfactory for the type of signals considered in this work. A time record
of 2050 data points was taken in each experimental run.

A LabView program using the G-language was constructed to acquire
the data (time record), to analyze the data by the classical methods, i.e.
compute numerically both the autocorrelation function and the power
spectrum from the acquired signal, and finally to save the results and the
time record on separate files. Several time records have been acquired over

range of free stream velocities from 4.00 to 27.00 m/s.

5.6 INSTRUMENTATION AND WT PROGRAM TESTING.

The measurement setup was checked for reliability by conducting a
vibration test via an exciter with the following instruments, big table head
type (B&K 4813), exciter body type (B&K 4801), exciter control type
(B&K 1047) and power amplifier type (B&K 2707). Also, the
measurement setup was tested by monitoring the vibrations of a vertically
mounted beam which was fastened to the previous exciter and the

accompanied instruments.
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CHAPTER 6
RESULTS AND DISCUSSION

6.1 INTRODUCTION

The test cylinder was mounted as discussed in the last chapter, and the
natural frequency f, and the damping ratio of that system were found to be
120 Hz and 0.02, respectively, after a simple impulse test.

The flow velocity was varied gradually in the range of free stream
velocities (4.00-27.00 m/s). The recorded time-series (acceleration signals)
have been analyzed via several methods to study the dynamic behavior of
the flow-induced vibration of an elastically mounted single cylinder in a
cross flow.

In the next section, the results of various methods of signal processing,
which have been used, are introduced and discussed, whereas chaotic
investigations including phase-space portraits, Poincaré-maps and fractal
dimensions (correlation factors) of some signals are introduced and

discussed in what follows.

6.2 SIGNAY, PROCESSING RESULTS

Several analysis methods (autocorrelation, power spectrum, GT and
WTs) have been applied to the time series at a free stream velocity of
19.00m/s. Fig.(6.1) shows the time series, the corresponding auto-
correlation and power spectrum. On the other hand, Fig.(6.2) shows the
corresponding Gabor  transform, whereas Fig.(6.3) shows the
corresponding WT using the modulated Gaussian wavelet, In this case, the
autocorrelation function, Fig.(6.1), indicates that the process is narrow-

banded (i.e., the autocorrelation decays slowly with time shift). The
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corresponding power . spectrum, Fig.(6.1), indicates that there are four

dominant frequencies; subharmonic (f =1/3f, ), fundamental
(f = f,=120Hz), super-harmonics (f =3f, and f =5f,). The third
order superharmonic (f =3f,) appears to have the dominant
contribution, while the contributions form the fundamental and the fifth
superharmonics are nearly equal, however the subharmonic (f =1/3f,)
contribution is lower than that of the other three harmonics. This suggests
that the process in this case is nonlinear, and probably of cubic type.

It is to be noted that the time-scale used for the wavelet transforms 3D
representations replaces the time series and frequency distribution with

scale parameters related to time and frequency but not equal to them. The

frequency scale obeys the Nyquist frequency, i.e. 1 <a, < f,, where f is
the sampling frequency, 27f <1, also the value of the frequency scale
(m) on the 3D wavelet plot is related to the actual frequency (f ) of the

time series waveform by the relation
ar =\f,]f 6.1)

where @ is the scale parameter as discussed in chapter three, and f, is an
arbitrary constant which depends on the type of waveletused, i.e. f, =
5.336 for modulated Gaussian, f, =1.42 for Mexican hat, f, = 2.83 for
eighth derivative of the Gaussian, f, =4.188 for Daubechie’s tight frame.
Thus, for the modulated Gaussian shown in Fig.(6.3), for example,
m=-3.04 corresponds to actual frequency f =360Hz. On the other
hand, the time scale for all the time series, the autocorrelation, the 3D
Gabor plot and the 3D wavelet plots for all types of wavelets corresponds

to the real time (7 ) by the relation
‘= Time Scale

Js
where f is the sampling frequency equals to 4kHz.

(6.2)
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From Fig.(6.2),- the Gabor transform shows that energy is mostly

concentrated at the fundamental frequency and the third subharmonic
(f =1/3f,); however other subharmonics, such as f =1/4 f,, and

f =3/4f,, appear to have minor contribution with low energy content.
The higher frequencies (i.e. including the superharmonics) are not
considered due to the long CPU time needed to compute the GT. For
example, the CPU time needed for a 128 data-points time record is about
36 hours, whereas for the WT using the modulated Gaussian wavelet it is
about 1/4 hour on a VAX machine.

Considering Fig.(6.3), the wavelet transform shows that energy is

concentrated at specific frequencies and times. It shows the process to be

dominated by the above four harmonic components f =1/3f,, f = f,,
S =3f, and f =5f; however, the fifth harmonic has a lower
contribution than that of the first, while as in the frequency spectrum
results, the third harmonic has the dominant contribution, and the third
subharmonic has the least contribution. Also, the ;Jvavelet results, Fig.(6.3)
indicate that while the third subharmonic and the fundamental persist
(continuous with time), the third and the fifth harmonic show intermittent

behavior with time (bifurcations from third to fifth superharmonics), where

for certain time intervals only one of these two harmonics (f =3f,,
Jf =5f,) is present in the response. This may suggest the existence of
transient disturbances in the flow or chaotic behavior or some nonlinear
modal coupling in the response of the cylinder, which requires further
investigations.

Figures (6.4-6.6) show the 3D wavelet plots of the time series in
Fig.(6.1) obtained using as mother wavelets, Mexican hat, eighth derivative
of the Gaussian and Daubechies tight frame, respectively.

The Mexican hat wavelet, Fig.(6.4), indicates that the process is
dominated by the third superharmonic (f = 3 f,) of variable magnitude,
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and continuous with time, while the fundamental harmonic has a relatively

small contribution and is discontinuous with time. The subharmonic
(f =1/3f,) and superharmonics (f 23f,) contributions shown in
Fig.(6.3) using the modulated Gaussian are not clearly identified in
Fig.(6.4), whereas another time discontinuous contribution at (f =12 1))
appears.

The eighth derivative of the Gaussian wavelet Fig.(6.5) shows that the
process 1is totally dominated by a time continuous tenth subharmonic
(f =0.1f,) of nearly constant magnitude and does not show any
significant contribution from other harmonics except from a very high
continuous superharmonic at (f =24 f ) which is of very small
magnitude.

The Daubechie's tight frame wavelet Fig.(6.6) shows a time changing
frequency content from low frequencies of about 4 Hz to higher ones of
about 17x10°Hz of changing magnitudes with maximum peaks
occurring at lower frequency f = 4 Hz. It is difficult in this case to make a
precise judgments on the frequency content of the process.

Based on the above results, in comparing Fig.(6.3) with Figures (6.4-6.6)
and Fig.(6.1), it was decided that the modulated Gaussian is the most
adequate wavelet to be used for the frequency analysis of the process under
consideration.  This conclusion was adopted depending on our knowledge

of the actual process and the instrumentaion setup used, for example if the
natural frequency f, is as obtained before (i.e. 120 Hz), then itis

nonresonable that a frequency at f = 24 f_has a contribution of the results
within the above selected wavelet (the eighth derivative of the Gaussian).
For this reason only the results using the modulated Gaussian are presented
at different free stream velocities in the sequel.

Further interpretation of the singularities, if existed, and the phase

modulations can be grasped by utilizing the 3D-phase-shift plot of the WT.
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Figures (6.7-6.8) show the 3D phase plots of the WT using the modulated
Gaussian at a free stream velocity of 19.00m/s; Fig.(6.7) shows the range
of (0—180°), whereas Fig.(6.8) shows the range of (~ 180—0°). It can
be seen from these two figures that even though the third superharmonic
persists, it changes phase with the elapse of time (i.e. singularities).
However, the fundamental harmonic shows a constant phase with time. In
addition, many phase changes are encountered for high superharmonics.
The results shown from the 3D-phase plots, Figures (6.7-6.8), the
topology of the Mexican hat wavelet transform plot, Fig.(6.4), and the
bifurcations of harmonics as shown by the modulated Gaussian wavelet
transform plot, Fig.(6.3), may indicate the process to be nonstationary.
Fig.(6.9) shows the time series waveform, and the corresponding
autocorrelation and the power spectrum for a free stream velocity of
4.98m/s. Fig.(6.10) shows the corresponding 3D modulated Gaussian
wavelet plot, Fig.(6.11) is another view of Fig.(6.10) using shorter time
scale. In this case, the autocorrelation indicates that the process is broad-

banded and the power spectrum shows the process to be dominated by the
fundamental harmonic (f = f,), a subharmonic (f =1/3f,) and a

superharmonic (f =2f,) as well as the existence of other super-
harmonics up to f =10f,. The wavelet transform Figures (6.10-6.11)
shows the existence of a dominant time continuous superharmonic
(f =3f,) of variable magnitude, a time continuous fundamental
harmonic of smaller and nearly constant magnitude and intermittent
superharmonics (f >3f,) upto (f =10f,) of variable magnitudes and
no superharmonic ( f =2 f,). The fact that the process is broad-banded
suggests that the process may be chaotic which requires further
investigations.

Fig.(6.12) shows the time series, the corresponding autocorrelation and

power spectrum, whereas Fig.(6.13) shows the corresponding modulated
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Gaussian 3D wavelet plot at a free stream velocity of 5.50m/s. The

autocorrelation and the power spectrum indicate that the process is broad-

banded with the existence of low subharmonic (f =1/3 f,), fundamental
(f =f,) and superharmonics up to f =7f, all of appreciable
magnitude. On the other hand, wavelet results indicate that the process is
dominated by a time continuous fundamental harmonic of nearly equal

magnitudes, a higher magnitude time continuous third subharmonic

(f =1/3f,), and a smaller magnitude time discontinuous superharmonic
(f =3f,). Very low and intermittent contributions are also observed
from high superharmonicsup to f =9 f,.

Fig.(6.14) shows the time series, the corresponding autocorrelation and
power spectrum, whereas Fig.(6.15) shows the corresponding modulated
Gaussian 3D wavelet plot at a free stream velocity of 24.08m/s. The

autocorrelation and the power spectrum indicate that the process is broad-

banded with the existence of low subharmonic (f =1/3 f,), fundamental
(f = f,) and supertharmonics up to f =8 f, all of appreciable magnitude.
However, wavelet results indicate that the process is dominated by a time
continuous superharmonic (f =3 f,) of variable magnitude, a smaller
magnitude time continuous fundamental harmonic and very small
intermittent sub- and superharmonic components.

In this case, the power spectra do not well correlate with the wavelet
transform as the process in this case may be nonstationary and thus the
power spectrum alone is not adequate to supply enough information
concerning the frequency content of the process.

Figures (6.16-6.17) show two different time series, the corresponding
autocorrelation and power spectrum for each time series at a free stream
velocity of 26.00m/s, whereas Figures (6.18-6.19) show the corresponding
modulated Gaussian 3D wavelet plot, for the time series of Fig.(6.16) and

Fig.(6.17), respectively. Here, the autocorrelation for both time series
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indicates that the process is narrow-banded; however, the power spectrum

of the first time series presented in Fig.(6.16) indicates that the process is
dominated by the low subharmonic (f =1/3f,) , the fundamental

(f =f,) and superharmonics up to f =8f,, whereas the power
spectrum of the second time series Fig.(6.17) shows a larger contribution
of the lower subharmonic (f =1/3f,) in addition to the other harmonics
in the first time series. Figures (6.18-6.19) show the wavelet 3D plot of the
first time series and the second time series, respectively, using the
modulated Gaussian window. Here again the WT contradicts the FT
results, and show that for both time series, Figures (6.16-6.17), the main
contribution comes from the persisting variable magnitude third
superharmonic (f =3f,) for both time series under consideration;
however, other harmonics such as the fundamental and high harmonics are
observed but with low magnitude in both Figures (6.18-6.19). On the other
hand, the WT of both time series show almost the same topology of the
3D-wavelet maps, i.e. they carry the same information, which means the
WT gives almost a complete description of the time and frequency content
of the signals such that if the time record is big enough to carry all the
information of the dynamic behavior of the system, it will be revealed in
Jjust one wavelet transform run.

It is to be noted that the peak at f = 1/3 f, observed in the power spectra
at the above stream velocities (U_ =4.98 ,U_=5.50,U_ =19.00,
U_,=24.08 and U_=26.00m/s) does not appear in the wavelet
transform, whereas it appears only at one low velocity of (U_ = 5.50m/s);
however it appears with very small component compared to other harmonic
at U_ =19.00. Although, as indicated above, this peak appeared in power
spectrum for the above free stream velocities, it vanishes in the wavelet
transforms; this agree with Shirakashi's assumption [60], which states that

this peak vanishes when introducing endplates.
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Whereas the frequency spectrum indicates constant, with time,
frequency content of the vibration signal, the wavelet transform indicates
that some of the harmonic components of the signal are intermittent with
time and exhibit a bifurcation schemes which suggests that the process
undergoes nonlinear dynamics which may lead the system to chaotic
behavior; it may also suggest that some transient (intermittent)
perturbations occur in the flow which may be due to the fan dynamics.

In general, from the WT representations of the various free stream
velocities discussed, one can deduce that the fundamental frequency
indicates the translational mode, whereas the third superharmonic may
indicate the rotational mode. The bifurcation of harmonics (especially
super ones), as seen in most of the WT representations, 1S a strong

indication of the chaotic behavior of the system.

6.3 CHAOTIC BEHAVIOR INVESTIGATIONS

The above results lead naturally to the analysis of the possible chaotic
responses of the several time series obtained. Thus, for every time series
discussed above, the phase plane, the Poincaré map, the correlation
function and the D, correlation dimension factor are obtained. Three
FORTRAN programs, Appendix C, have been developed to give the phase-
plane data, the Poincaré map data, and the correlation factor data,
respectively.

Fig.(6.20) shows the phase-plane portrait, the corresponding Poincaré
map, and the corresponding correlation function for a stream velocity of
4.98m/s. The Poincaré maps were carefully constructed by choosing a
sampling rate (f,) of 4 for our work by considering the phase-plane plots
[95]. The phase plane suggests the possibility of chaotic behavior since no

certain pattern is found, while the Poincaré map shows a lot of scattered

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



73

points which again indicates powerfully the existence of chaos. However,
the slope of the correlation function (the D, correlation dimension factor)
presented in Fig.(6.20.c) is found to be 1.65872 which is greater than one,
thus the system at the stated parameters is chaotic.

Fig.(6.21) shows the phase-plane portrait, the corresponding Poincaré
map, and the corresponding correlation function for a free stream velocity
of 5.50m/s. The phase plane and the Poincaré map suggest the possibility
of chaotic behavior. However, the D, correlation dimension factor
presented in Fig.(6.21.c) is found to be 1.88259 which is greater than one,
thus the system at the stated parameters is chaotic.

Figures (6.22-6.24) show the phase planes, the Poincaré maps and the
cormrelation functions at free stream velocities of 19.00, 24.08, and
26.00m/s, respectively; the D, correlation dimension factors are found to
be 1.67353, 1.92052, and 1.80941, respectively. Thus all these signals are
chaotic and the system under consideration undergoes strong nonlinearity
which led the system into chaos.

The velocity versus the D), correlation dimension factor is shown in
Fig.(6.25); here one can deduce that the degree of chaos (the power of
divergence of nearby orbits) trends to increase with velocity, but with
fluctuating behavior at high velocities, and minimum peaks at 4.50 and

19.00m/s free stream velocities.
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Figure (6.2) : The 3D-Gabor plot at a free stream velocity of 19.00m/s.
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Energy Distribution

Figure (6.3) : The 3D-wavelet plot using the modulated Gaussian
as a mother wavelet at a free stream velocity of 19.00m/s.

Energy Distribution

Figure (6.4) : The 3D-wavelet plot using the Mexican hat as a
mother wavelet at a free stream velocity of 19.00m/s.
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Figure (6.5) : The 3D-wavelet plot using the eighth dertvative of the
Gaussian as a mother wavelet at a free stream velocity of 19.00m/s.
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Figure (6.6) : The 3D-wavelet plot using Daubechies’ tight frame

as a mother wavelet at a free stream velocity of 19.00m/s.
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plot of the wavelet on the range (0-180°) using the

modulated Gausstan as a mother wavelet at a free stream velocity of 19.00m/s.

Figure (6.8) : The 3D-phase-plot of the wavelet on the range (-180°-0) using the
modulated Gaussian as a mother wavelet at a free stream velocity of 19.00m/s
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Figure (6.11) : Another view of Figure (6.10) using a shorter time scale.
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%7@
as a mother wavelet at a free stream velocity of 5.50m/s.

Figure (6.13) : The 3D-wavelet plot using the modulated Gaussian
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as a mother wavelet at a free stream velocity of 24.08m/s.

Figure (6.15) : The 3D-wavelet plot using the modulated Gaussian
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Figure (6.18) : The 3D-wavelet plot of the first time series using the modulated
Gaussian as a mother wavelet at a free stream velocity of 26.00m/s.
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Energy Distribution
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Figure (6.19) : The 3D-wavelet plot of the second time series using the modulated
Gaussian as a mother wavelet at a free stream velocity of 26.00m/s.
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(a) Phase plot, (b) Poincaré map, and (c) the D, correlation dimension
factor at a free stream velocity of 4.98m/s.
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Figure (6.21) : (a) Phase plot, (b) Poincaré map, and (c) the D, correlation dimension
factor at a free stream velocity of 5.50my/s.
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Figure (6.22) : (a) Phase plot, (b) Poincaré map, and (¢) the D, correlation dimension

factor at a free stream velocity of 19.00m/s.
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Figure (6.23) : (a) Phase plot, (b) Poincaré map, and (c¢) theD2 correlation dimension
factor at a free stream velocity of 24.08m/s.
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Figure (6.25) : The D, correlation dimension factor versus the free stream velocity.
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CHAPTER 7
CONCLUSIONS & RECOMMENDATIONS

7.1 INTRODUCTION

This chapter summarizes the important points which have emerged from
the present investigation, and outline areas which need further

investigation.

7.2 CONCILUSIONS

Several points have emerged from the various techniques used to
represent and analyze the flow induced vibration signals. These points can
be outlined as follows.

1. As expected, the time series of the vibration (acceleration) of the
elastically mounted circular cylinder in a cross flow viewed at
different velocities appear completely random, with the possibility of
being nonstationary.

2. The results of frequency analysis show that, in general, most of the
energy is concentrated at three definite peaks, the fundamental, the
third sub- and the third super-harmonics.

3. The classical methods are insufficient for a thorough investigation of
the dynamic process under consideration and can lead to erroneous
conclusions about the dynamic activities of the process.

4. The WT can be a powerful and efficient technique for joint time-
frequency analysis if properly used, i.e. one should be aware of the

properties of the particular wavelet used in a certain application.
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5. Of the several wavelet tested in this work, the modulated Gaussian is
found to give the most realistic results, when compared to those
available in the literature using different signal analysis techniques.

6. A representation of only the amplitude of a complex wavelet is not
enough to thoroughly investigate the singularities of the process,
thus, one should also examine the phase which corresponds to the
imaginary part of the complex wavelet function. -

7. The Gabor transform, in addition of requiring a large computational
facility than the WT for the same data record, does not seem to be
adequate for the present relatively low frequency process.

8. For the particular free stream velocity values considered in this work,
they are found mostly to be chaotic.

9. The order of harmonics excited in the results of the various
frequency analyses suggests that the nonlinearity in the process is of
the third type. This may be used in the formulation of a theoretical
model for this process.

10. The WT is an efficient method in the analysis of chaotic signals as it
can reveal more clearly than the classical methods the possible route
to chaos and the way the various harmonics bifurcates to others as
the process undergoes transitional chaotic behavior.

11.Among the classical chaotic techniques used, the phase-plans
portraits and the Poincaré maps suggest the possibility of chaotic
behavior. However, the fractal dimensions indicate the emergence of

chaos, thus supporting the results obtained using the WT.

7.3 RECOMMENDATIONS

1. Other wavelet techniques, such as wavelet packets should be

investigated for the capability of extracting information about the
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flow induced vibration phenomena. Also, the newly developed
complex wavelet techniques such as, the harmonic wavelets, should
be investigated.

. The fractal dimension of the Poincaré map does not represent the
fractal dimension of the dynamics of the process, because the
Poincaré map represents only a two dimensional space, and the
process under consideration may require more than two dimensional
space to capture the qualitative features of the dynamics of the
process. Thus, to describe the system properly one should take into
account the number of degrees of freedom required to describe the
system,

. A more realistic study requires consideration of longer time records,
and thus requires much larger storage and computational capability

of system used in this work.
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A.1 THE P-DEGREE NORM
For a Hilbert space of P-degrees R”, the norm of a function f=f(t)

defined as

71, =[flr @) e A1)

A.2 LINEARITY PRINCIPLE

If
x(t) =a*x,(t)+b*x,(t) (A2)
then a function TFR (Time-Frequency Representation) of x(¢) is linear

if

TFR(x(t)) = a*TFR(x,(t)) + b* TFR(x, (¢)) (A.3)

A.3 FOURIER TRANSFORM PROPERTIES
A.3.1 DEFINITION

A periodic discrete sequence x[n] can be represented by a Fourier

integral as
x[n]= 1 [X(w)e’ do (A.4)
21 =,
where X (ej “’) is the Fourier transform and is given by

X(w)= ix[n]ejm (A.5)

=00

Eq.(A.4) is usually termed the inverse Fourier transform. Moreover,

Eqgs.(A.4) and (A.5) form a Fourier transform pair which is given the

notation
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*[n]& X (o)

where f denotes the Fourier transform.

A.3.2 LINEARITY OF THE FOURIER TRANSFORM

If

and

then

A.3.3 TIME SHIFTING AND FREQUENCY SHIFTING

If

x[1]& X, [0]

x,[n]é X, 0]

axl[n]-}-bxz[n]éba X [o]+bX,[0]

x[n]é X(w)

then the #, time-shifted sequence is

x[n- no]é)e"j"“‘“X (o)

and the @, frequency-shifted Fourier transform is

A.3.4 DIFFERENTIATION IN FREQUENCY DOMAIN

If

then

. f
e’ "xn]leX(o-o0,)

x[n]e X (o)

] j2-(X (@)

(A.6)

(A7)

(A.8)

(A9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

112,
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A.3.5 THE CONVOLUTION THEOREM
If
f
xn]es X (o)
and
S
h[n] s H(o)
and if

oo

s{n)= 3 s(nlh{n—Kk]= nleHn]

k=—c0

then

Y(o)=X(0)+H(®)

(A.15)

(A.16)

(A.17)

(A.18)

A.3.6 THE MODULATION OR WINDOWING THEOREM

If
s
X[n]e X ()
and
p
w[n]e W(0)
and if
y[n] = x[n]wn]
then
Y(0)= ﬁ [ X®W(0-8)do
A.3.7 PARSEVAL'S THEOREM
if
s
xn]e X (w)
then
E= Y |x[n]

n=—oa

(A.19)

(A.20)

(A21)

(A.22)

(A.23)

(A.24)

113
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(f+8mamsy MNEZ (A.35)
uniquely determine jf and that a numerical stable algorithm can be found

to compute f from the coefficients.

A.7 ORTHOGONAL BASIS
A frame {gm b MNE Z} is orthonormal if the frame condition holds
with B =1, i.e.
2
2 ZZ|<f Brans)| S (A.36)
meZ ne

The function f will not be generally determined by the coefficients. If a

fame is an orthonormal basis then

S K 8mans)| =M1 (A37)

meZ neZ
and thus
F =2 DS 2 8uans) Eomans (A38)
meZ neZ

which gives the proper reconstruction of f.

A.8 TIGHT FRAMES

A frame is called a tight frame if A = B (equal frame bounds), thus

=473 SKSf G| (A.39)
meZ neZ
and
F=AT Y YA 8rams) Erams (A.40)
meZ ncZ

It is to be noted that the computational advantages of orthonormality are

retained; 1i.e. the signal energy, up to the scaling factor Al is given by the
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energy of the sequence of samples and the signal can be reconstructed from
these coefficients.

For any frame, a "dual” reference signal g can be found such that the set

of functions

{gm,,:m,n € Z} (A.41)
1s a frame with

B <Y SKf ) <Al a2

meZ neZ

and

F =2 XA 1 8mans VBmans (A.43)

meZ neZ
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GT AND WT COMPUTER PROGRAMS

APPENDIX B
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CCCCCCCCCCCCCCCCCeceeeccceeccccceecececcecccccececce ¢

C
C
C

THE FIRST PROGRAM C
THIS FUNCTION COMPUTES THE GABOR COEFFICIENTS C
THE GABOR TRANSFORM. C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCece ¢

11

DIMENSION TT (0:1025), XA(0:1025), XG(0:1025)

COMPLEX*16 XX(0:1025,0:1025),X(0:1025,0:1025),W(0:1025,0:1025)
COMPLEX*16 HA(0:1025,0:1025),HG(0:1025,0:1025),W1(0:1025,0:1025)
COMPLEX*16 WW(0:1025,0:1025),G(0:1025,0:1025)

COMPLEX*16 DA(0:1025,0:1025),DG(0:1025,0:1025)

DOUBLE PRECISION PHASE(0:1025,0:1025)

DOUBLE PRECISION A(0:1025,0:1025),AN1R,ANI1I
OPEN(UNIT=1,FILE='V12S1.TXT ,STATUS="OLD")

"OPEN(UNIT=4,FILE="V12G1.0UT,STATUS=NEW")

OPEN(UNIT=12,FILE="V12PHG1.QUT,STATUS=NEW")

PI=4 *ATAN(1.)

LI =1

HH =1.

NOS = 1024

MOS =NOS

WRITE(*,*)PLEASE ! ENTER THE NUMBER OF SAMPLES (NOS)?'
READ(*,*) NOS

DO 3 K=1,NOS
READ(1,*) AIZ
XA(K)=AIZ

X(LLK) = CMPLX(AIZ,0.)
CONTINUE

DO 111=1,NOS
XG(I) = G_FUN(REAL(I) / REAL(NOS) )
CONTINUE

NOSD2 = NOS/2.

MOSD2 = MOS/2.

MPM = LOG(REAL(MOSD2}) / LOG(2.)
NPN =LOG(REAL(NOSD2))/LOG(2.)
XZ =N/ (4*NOSD2)
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YZ=M/MOSD2

CALL FN(MOSD2,NOSD2,XA,DA)
DO 99 N = 1,NOSD2
DO 88 M = 1 MOSD?2
CALL ZT(M,NMPMMOSD2,NPN,NOSD2,XZ,YZ PI,DA HA)
CALL FN(MOSD2,NOSD2,XG,DG)
CALL ZT(M,N,MPM,MOSD2,NPN,NOSD2,XZ YZ PI,DG HG)
88 CONTINUE
99  CONTINUE
DO 77 I1=1MOSD2
DO 66 J=1N0SD2
RGMAG = REAL(HG(LJ))**2 + DIMAGHG(,D)**2
IGMAG = CMPLX( RGMAG, 0.}
WI(L]) = HA(J)*HG(LJ)
66 CONTINUE
77 CONTINUE

CALL ID2FFT(W1,MPM,MOSD2,NPN,NOSD2,W)
DO 55 M = 1,MOSD2
DO 44 N =1,NOSD2
ANIR = REAL{W1(M,N))
AN1I = DIMAG(WI1(M,N))
AMM,N) = ANIR*#2 + AN1I**2
WRITE(**)A=",A(M,N),/W1="W1(M,N)
IF (AN1R.NE.0.0) THEN
PHASE(M,N) = DTAN(AN1I/ANIR)
ELSE
PHASE(M,N) = 90.0*P1/180.0
END IF
WRITE(12,135) M,N,PHASE(M,N)
135 FORMAT(I3,3X,15,2X,F56.4)
WRITE(4,134) M,N,A(M,N)
134 FORMAT(13,3X,15,2X,F56.3}
44 CONTINUE
55  CONTINUE
STOP
END

120
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20

THIS SUBROUTINE PERFORMS THE ZAK TRANSFORM OF A
TWO DIMENSIONAL FUNCTION

SUBROUTINE ZT(M,N,MPM ,MOSD2,NPN,NOSD2,XZ,YZ,PI,D ,H)

COMPLEX*16 D(0:1025,0:1025), H(0:1025,0:1025)

COMPLEX*16 A(0:1025),B(0:1025), TTT

DOUBLE PRECISION AN2I, AN2R

COMPLEX*16 SUM

XZ =N/ (4*NOSD2)

YZ=M/MOSD2

PI =4.0*ATAN(1.0)

CALL D2FFT(A,B,MPM,MOSD2,NPN,NOSD2,D)

DO 20J=1,NOSD2

TTT = CMPLX( 0., 2*PI*N*J/(4.*NOSD2) )

HM,J) =HM,J) + DIM,)*EXP(TTT)

CONTINUE

RETURN

END

THIS SUBROUTINE TRANSFORMS ONE DIMENSIONAL BOUNDED
FUNCTION INTO TWO DIMENSIONAL ONE
SUBROUTINE FN(MOSD2,NOSD2,AA,D)
COMPLEX*16 D(0:1025,0:1025)
DIMENSION AA(0:1025)
DO 11J=1NOSD2
DO 2 IK = 1,MOSD2
IF(((IK+1)).GT.MOSD2*2).0R.((IK+IJ).GT.NOSD2*2)) GOTO 2
D{IK,IJ) = CMPLX( AA(IK+1J), 0.)
CONTINUE
CONTINUE
RETURN
END
COMPLEX FUNCTION PSIG(D,WWILW)
COMPLEX G,TT1
PI =4 *ATAN(1.)
PSI = SQRT(SQRT(2.)/D)*D/(SQRT(2.*PI))
*EXP(-W**2 / (4. *SQRT(PI)/D)**2 )
RETURN
END

i21
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30

40

COMPLEX FUNCTION GG(IIP,D,WWLW)
COMPLEX G,TT1
PI=4*ATAN(1.)
GG = SQRT(SQRT(2.)/D)*D /(SQRT(2.*PI))
*EXP(-W**2/(4 *(SQRT(PIY/D)**2))
RETURN
END

THIS SUBROUTINE CARRIES OUT 1D FFT
SUBROUTINE FFT(A,N,NB)
COMPLEX A(NB),UD,W,T
DO 11J1=1,NB

A(D) = AJD/NB

NBD2 = NB/2

NBMI = NB-1

Nn=1

DO 40 L = 1,NBMI
IF(L.GE.JT) GOTO 20

T = A(QD

AJD = A(L)

AL)=T

K =NBD2

IF(K.GE.JI) GOTO 40
JN=JIK

K =K/2

GOTO 30

I =J+K

PI = 4.0*ATAN(L.0)
DO16M=1N

UD = (1.0,0.0)

ME = 2#+M

K =ME/2

W = CMPLX(COS(PI/K)-SIN(PI/K))
DO1611=1K

DO 15 L=1JI, NB, ME

LP = L+JI

T = A(LP)*UD

122
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16

11

20

13

12

1

A(LP) = AQL)-T
AL) = A[LHT
UD = UD*W
RETURN

END

THIS SUBROUTINE CARRIES OUT THE 2D FFT
SUBROUTINE D2FFT(A,B,N1,NB1,N2,NB2,C)
COMPLEX*16 A(NB1), B(NB2), C(NB1,NB2)
DO 20K =1,NB1

DO 11JI=1,NB2

B{UD = CK,JI)

WRITE(*,*) BAD)

‘CALL FFT(B,N2,NB2)

DO 20 JI=1,NB2

C(K.,JD = B{I)

DO 12K =1,NB2

DO 13JI=1,NB1

AT =C(LK)

CALL FFT(A,N1,NB1)

DO 12 JI=1,NB1

CJLK) = A(JT)

RETURN

END

SUBROUTINE FINT(W1,NOS,M,HH)
COMPLEX*16 W1(0:1026,0:1026), T, VXW1(0:1026,0:1026)
VXWIM,1) = (HH/24)*(9.¥*W1(M,1) + 19 *W1(M,2) - 5.¥*W1(M,3)
& +W1(M,4))
VXWI1(M,NOS) = (HH/24.)*(9.*W1(M,NOS+1) + 19 *W1(M,NOS)
& -5 *W1(M,NOS-1) + W1(M,NOS-2))
DO1 K=2,NOS-1
VXWI1(M,K) = (HH24. Y (-WIM,K-1) + 13 *WIM,K) + 13.*W1(M,K+1)
& “W1(M,K+2))
CONTINUE
WI1M,2) = VXWIM,1)
DO 6J=3,NOS+1
WIM,J) = WIM,J-1) + VXW1(M,J-1)

123
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CONTINUE
RETURN
END

THE GAUSSIAN FUNCTION OF GABOR MODEL
DOUBLE PRECISION FUNCTION G_FUN(T)

Pl = 4.0*ATAN(1.0) ‘

G_FUN = EXP(-PI*T**2)

RETURN

END

THIS SUBROUTINE CARRY OUT THE INVERSE 2D FFT
SUBROUTINE ID2FFT(C,N1,NB1,N2,NB2,W)
COMPLEX*16 C(0:1025,0:1025), W(0:1025,0:1025), TTT, SUM
PI = 4.0*ATAN(1.0)
DO 35M=1,NB1
DO 30 N=1,NB2
SUM = (0.,0.)
DO251=1NBI1
DO20J=1NB2
TTT = CMPLX(0., 2*PI*((I-1)*M/NB1 + (J-1)*N/NB2) }
SUM = SUM + C(LI*EXP(TTT)
CONTINUE
CONTINUE
W(M,N) = SUM
CONTINUE
CONTINUE
RETURN
END
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
THE SECOND PROGRAM
THIS PROGRAM COMPUTES THE AMPLITUDE AND PHASE OF
THE WAVELET TRANSFORM USING ONE OF THE FOLLOWING
WAVELETS g(t) :
1 THE MODULATED GAUSSIAN
2 THE MEXICAN HAT
3 THE 8TH DERITIVES OF THE GAUSSIAN
4 DAUBECHIES' TIGHT FRAME
5 POLYNOMIAL SPLINES OF ORDER 3
6 Y MEYERS CONSTRUCTION
7 ONE CYCLE OF THE SINE FUNCTION
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCE
DIMENSION TT(8900), XA(-525:-525,8900)
COMPLEX*16 XX(-525:-525,8900),X(-525:-525,8900), W(-525:-525,8900)
COMPLEX*16 H(-525:-525,8900),W1(-525:-525,8900),W2(-525:-525,8900)
COMPLEX*16 WW(-525:-525,8900)
DOUBLE PRECISION PHASE(-525:-525,8900)
DOUBLE PRECISION A(-525:-525,8900),AN1R,AN1I

o000 00000n0n
OO0 0000an

OPEN(UNIT=LFILE=V19S1.TXT ,STATUS='OLD")
OPEN(UNIT=4,FILE='V19W1.0UT',STATUS=NEW")
OPEN(UNIT=12,FILE="V19PH1.OUT ,STATUS=NEW")

PI=4.*ATAN(L.)
C  THE COEFFICIENTS a0 AND b0 ARE DI AND BII, RESPECTIVELY
DI=2.
BII=1.
C  READ(*,111)1IIP
IIP=1
Cl11 FORMAT(1)
C  WRITE(**YPLEASE ENTER THE NUMBER OF SAMPLES (NOS)?
C  READ(**) NOS
NOS = 2048

DO 3K =1,NOS
READ(1,4) AIZ
XA(LLK) = AIZ
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4 FORMAT(F10.6)

X(LLK) = CMPLX(XA(LLK),0.)
3 CONTINUE

CALL FFTC(X,NOS,0)

INFT = 1024

DO 99 N =2 NOS+1
DO 88 M =-INFT,INFT
CALL WT(IIP,M,N,PLDI,BIL,NOS,H)
DO 771=1N0S
WI1(M,]) = HM,D*X(LL1I)
77 CONTINUE
CALL FINT(W1,NOS,M,HH)
W(M,N) = (SQRT(2.**M))*W1(M,NOS+1)
CALL FFTC(W,NOS,1)
ANIR = REAL(W(M,N))
ANI1I =DIMAG(W(M,N))
A(M,N) = ANIR**2 + AN]**2
IF (AN1R.NE.0.0) THEN
PHASE(M,N) = DTAN(AN1I/AN1IR)
ELSE
PHASE(M,N) = 90.0*PI/180.0
END IF
WRITE(12,135) M,N,PHASE(M,N)
135 FORMAT(I3,3X,15,2X F56.4) -
[F(M.GE.1) GOTO 88
WRITE(4,134) M,N,A(M,N)
134 FORMAT(13,3X,15,2X,F56.3)

88 CONTINUE
99 CONTINUE
STOP
END

C THIS SUBROUTINE COMPUTES THE WT AT CERTAIN M AND N
SUBROUTINE WT(IIP,M,N,PL,DI,BII,NOS,H)
COMPLEX*16 XX(-525:-525,8900),H(-525:-525,8900)
COMPLEX*16 TTT
DOUBLE PRECISION AN2I,AN2R

126.
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DO 2J=2N0S
W =REAL(J)
AA =DBLE((DI**M)*W)
XX(M,J) = PSI(1IP,DI,BII,AA)
AN2R = REAL(XX(M,]))
AN2I = DIMAG(XX(M,]))
TTT = CMPLX(0.,DI**M*BII*N*J)
HM,J) = EXP(TTT)*XX(M,J)
RETURN
END

THIS SUBROUTINE GIVES THE WAVELET TO BE USED
COMPLEX FUNCTION PSI(IIP,DI,BII,W)

"COMPLEX G,TT1

PI=4*ATAN(1)
IF(IIP.LT.1.0R.IIP.GT.7) RETURN

GO TO (1,2,3,4,5,6,7), IIP

XK1 = PI*(2/LOG(2.))**.5

PSI=PI**(- 25)*EXP((-(W-XK1)**2)/2.)-EXP(-XK1**2/2.)
*EXP(-W*+2/2.))

RETURN

PSI = 2./(3.)%*(.5)*PI**(- 25)*(W)**2*EXP(-W**2/2.)
RETURN

PSI = .011238*PI**(- 25)%(W)**8 ¥EXP(-W**2/2.)
RETURN -

XL = 2.*PI/(BII*(DI**2-1.))

F=DI*XL

FF = DI**2*XL

IF(W.LT.XL.OR.W.GT.FF) PSI=0
IF(W.GE.XL.OR.W.LT.F) GO TO 8
IF(W.GE.F.OR.W.LT.FF) GO TO 9

RETURN

Q= (W-XL)Y/(XL*(DI-1.))

IF(Q.LT.1.0.0R.Q.GT.0) GO TO 62

IF(Q.LE.0) V=0

IF(Q.GE.1) V=L.

GO TO 57

V=Q
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58
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PSI = (LOG(DD)**(-.5)*SIN(PI/2.*V)

RETURN

Q = (W-DI*XL)/(DI*XL*(DI-1.))

IF(Q.LT.1.0.0R.Q.GT.0) GO TO 55

IF(Q.LE.0) V=0

IF(Q.GE.1) V=1.

GO TO 57

V=Q

PSI = (LOG(DD)**(-.5)*COS(PI/2.*V)

RETURN

X1 = 5.430.5(COS(W/2.))**2 + 30.5(SIN(W/2.))#*2*(COS(W/2.))**2

X2 = 2.4(COS(W/2.))**2*(SIN(W/2.))**4 + 70.X(COS(W/2.))**4
+2./34(SIN(W/2.))**6

SIGMAS = (X1+X2)/(105.*(SIN(W/2.)))

X3 = 5. + 30.5(COS(W/4.))**2 + 30.*(SIN(W/4.))**¥2*(COS(W/4.))**2

X4 = 2.%(COS(W/4.)**2*(SIN(W/4.))**4+70 *(COS(W/4.))**4
+2./3 *(SIN(W/4.))**6

SIGMA7 = (X3+X4)/(105.4(SIN(W/4.)))

X7 =5.430.*(COS(W/4+PI))**2+30.*(SIN(W/4+PD))**2*(COS (W/4+PT))**2

X8 = 2.%(COS(W/4+PI))*+2*(SIN(W/4+PD)**4+70 *(COS(W/4+PT))**4

+ 2./3.%(SIN(W/4+PI))**6

SIGMAG = (X7+X8)/(105.*(SIN(W/4+PD)))

PSI = EXP(TP)/W**4 *(SIGMAG6/(SIGMA8*SIGMAT))

RETURN

XL = 2. *PI/(BII*(DI**2-1.))

F=DI*XL

FF = DI**2%XL

IF(W.LT.XL.OR.W.GT.FF) PSI=0

IF(W.GE.XL.OR.W.LT.F) GO TO 18

IF(W.GE.F.OR.W.LT.FF) GO TO 19

RETURN

Q = (W-XL)Y/(XL*(DI-1.))

IF(Q.LT.1.0R.Q.GT.0) GO TO 17

IF(Q.LE.0) V=0

IF(Q.GE.1) V=1.

GO TO 58

vV=Q

PSI1 = (LOG(DI)**(-.5)*SIN(P1/2.%V)
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77
59

12

O00a0an

10
20

v=-Q

PSI2 = (LOG(DI)**(-.5)*SIN(PI/2.*V)

GO TO 12

Q = (W-DI*XL)/(DI*XL*(DI-1.))
IF(Q.LT.1.OR.Q.GT.0) GO TO 77
IF(Q.LE.0) V=0

IF(Q.GE.1) V=L.

GO TO 59

V=Q

PSI1 = (LOG(DI))**(-.5)*COS(PI/2.*V)
V=-Q

PSI2 = (LOG(DI)**(-.5)*COS(PI/2.*V)

TT1 = CMPLX(0.,(W/2.))

PSI = (2.*PI)**(- 5)*EXP(TT1)*(PSI1+PSI2)
RETURN

PSI = (2.)**(.5)/PI*CMPLX(0.,SIN(PI*W)/(1.-W**2))
RETURN

END

THIS SUBROUTINE FINDS 1D FFT AND ITS INVERSE
X =2**M COMPLEX ARRAY

N =2**M POINTS

INV = 0 FLAG FOR DIRECT TRANSFORM

INV =1 FLAG FOR INVERSE TRANSFORM

_SUBROUTINE FFTC(X,N,INV)

COMPLEX*16 X(-525:-525,8900),U,W,T,CMPLX
M = LOG(DBLE(N)) / LOG(2.)+.1
NV2=N/2

NMI1 =N-1

J=1

DO 401=1NM1

IF (I.GE.J) GO TO 10

T =X(1,])

X1, =X(1,])

X(1,Dh=T

K=NV2

IF (K.GE.J)GO TO 30

J=J-K

129
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WI(M,2)=VXW1(M,1)
- DO 6 1=3,NOS+1
WIM,JI)=WI1M,J-1)}+VXWI(M,J-1)
CONTINUE

RETURN

END

131
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APPENDIX C

CHAOS COMPUTER PROGRAMS
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C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe ¢
C THIS PROGRAM DO THE NECESSARY STEPS OF C
C INTEGRATION AND THUS ENABLING THE CONSTRUCTION  C
C OF A PHASE PLOT PORTRAIT. C
C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe ¢
DIMENSION DDX(2500),DX(2500),X0(2500)
OPEN(UNIT=11,FILE='C:\V1281.TXT',STATUS='0LD")
OPEN(UNIT=12,FILE=DX12.TXT",STATUS="NEW")
NOS IS THE NUMBEER OF SAMPLES
SF IS THE SAMPLING FREQUENCY
READ(*,*)NOS
READ(*,*)SF
SF = 4000
NOS= 2030
DT = 1./SF
SUM1=0.
DO 101=1,NOS
READ(11,*)DDX(])
SUM1 = SUM1 + DDX()
10 CONTINUE
SMEAN = SUM1/NOS
DO 151=1,NOS
DDX(I) = DDX(I) - SMEAN
15 CONTINUE

O 000N

CALL INTEGRAL(NOS,DT,DDX,DX)
SUM2 =0
DO 161=1,NOS
SUM2 = SUM2 + DX()
16 CONTINUE
SMEAN = SUM2/NOS

DO 17 I=1,NOS
DX(I) = DX(I) - SMEAN
17 CONTINUE

CALL INTEGRAL(NOS,DT,DX ,X0)
SUM3 =0
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10

DO 18 1=1,NOS

SUM3 = SUM3 + X0(I)
CONTINUE
SMEAN = SUM3/NOS
DO 191=1N0S
XO(I) = XO(I) - SMEAN
CONTINUE

DO 201=1NOS

DXD=DX(D)*10**6
X0(D=X0(I)*10**8
WRITE(12,5)DDX(I),DX(I),X0(I)
FORMAT(1X,F5.3,3X,F15.9,3X,F16.8)
CONTINUE

STOP

END

SUBROUTINE INTEGRAL(NOS,DT,X,Y)
DIMENSION X(0:2500),Y(0:2500)
X(0)=X(1)

X(NOS+1)=X(NOS)

DO 10 I=1,NOS

SUM =0.

DO 20 J=1,1

SUM = SUM + ( X(J-1) + 4*X(J) + X(J+1) )*DT
CONTINUE

Y(D) = (1/6.)) * SUM

CONTINUE

RETURN

END

134
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C CCCCCCCCCCCCCCceeeeeeeeeceeccccceccecee cecccc

C

C

THIS PROGRAM CONSTRCTS THE 2D POINCARE
C PLANE, AND IT NEEDS BOTH THE DISPLACEMENT AND

THE VELOCITY SERIES.

C
C
C

C CCCCCCCCCCCCCCCecceceececcececeeccececeeccceeccece ¢

O 000N

O 0

101
102

DIMENSION DDX(2500),DX(2500),X0(2500)

OPEN(UNIT=13,FILE=DX12.TXT ,STATUS='"0OLD")
OPEN(UNIT=14,FILE=P12.TXT ,STATUS=NEW")

NOS IS THE NUMBEER OF SAMPLES
SF IS THE SAMPLING FREQUENCY
READ(*,*)NOS

READ(*,*)SF

SF = 4000

NOS= 2030

DT = 1./SF

READ(*,%)K

K=t

SUM1=0,

DO 8 I= 1,NOS

READ(13,*) G,DX(I),X0(I)

DX(I) = DX(I)

X0(D =X0D

CONTINUE

DO 9 I=1,NOS/K
WRITE(14,102)X0(K*I),DX(K*I)
CONTINUE
FORMAT(1X,F12.8,2X F12.8,2X F12.8,2X,F12.8)
FORMAT(1X,F15.9,2X,F15.9)

STOP

END
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C CCCCCCCCCCCCCecccccecceccceccececceccecce cceecce

C
C
C

THIS PROGRAM COMPUTES THE CORRELATION C

FACTORS AND THUS THE 2ND ORDER CORRELATION C
DIMENSION CAN BE EVALUATED AFTER PLOTTING C

C CCCCCCCCCCCCCCCCcecececceeecececceeceeccecececcece ¢

10

19

18

17

102
20

DIMENSION Y(2500), X(2500), R(150)
DOUBLE PRECISION C(150)
OPEN(UNIT=11,FILE='P12.TXT',STATUS='OLD")
OPEN(UNIT=12,FILE="CR12.TXT",STATUS=NEW")
READ(*,*) N
N = 1000
DO 101=1,N
READ(11,%)X(D,Y(D)
CONTINUE
R(1) = 0.
RMAX=50
MAX REPRESENTS THE MAXIMUM NUMBER OF VECTOR
VALUES SHOULD BE TAKEN IN THE RANGE (0 TO R_MAX)
MAX =25
DO 17 K = 1,MAX
SUM2 = 0.
R(K) = RMAX/(MAX-K+1)
DO181=1,N
SUMI = 0.
DO19J=1N
IF(LEQ.J) GOTO 19
DIFF = R(K) - DIST(X(1),X(3),Y(D,Y(D))
SUM1 = SUM1 + HEAVI(DIFE)
CONTINUE
SUM?2 = SUM2 + SUMI
CONTINUE
C(K) = SUM2/N**2,
CONTINUE

DO 20K =1 MAX

WRITE(12,102) R(K), C(K), LOG(R(K)), LOG(C(K))
FORMAT(1X,F12.8,2X,F15.10,2X,F15.10,2X,F15.10)
CONTINUE
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